• Title/Summary/Keyword: image detection system

Search Result 2,112, Processing Time 0.035 seconds

Design of Port Security System Using Deep Learning and Object Features (딥러닝과 객체 특징점을 활용한 항만 보안시스템 설계)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.50-53
    • /
    • 2022
  • Recently, there have been cases in which counterfeit foreign ships have entered and left domestic ports several times. Vessels have a ship-specific serial number given by the International Maritime Organization (IMO) to identify the vessel, and IMO marking is mandatory on all ships built since 2004. In the case of airports and ports, which are representative logistics platforms, a security system is essential, but it is difficult to establish a security system at a port and there are many blind spots, which can cause security problems due to insufficient security systems. In this paper, a port security system is designed using deep learning object recognition and OpenCV. The security system process extracts the IMO number of the ship after recognizing the object when entering the ship, determines whether it is the same ship through feature point matching for ships with entry records, and stores the ship image and IMO number in the entry/exit DB for the first arrival vessel. Through the system of this paper, port security can be strengthened by improving the efficiency and system of port logistics by increasing the efficiency of port management personnel and reducing incidental costs caused by unauthorized entry.

  • PDF

The Effect of Invisible Cue on Change Detection Performance: using Continuous Flash Suppression (시각적으로 자각되지 않는 단서자극이 변화 탐지 수행에 미치는 효과: 연속 플래시 억제를 사용하여)

  • Park, Hyeonggyu;Byoun, Shinchul;Kwak, Ho-Wan
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • The present study investigated the effect size of attention and consciousness on change detection. We confirmed the effect size of consciousness by comparing the condition which combined attention and consciousness and the condition of attention without consciousness. Then, we confirmed the effect size of attention by comparing the condition of attention without consciousness and the control condition which excluded attention and consciousness. For this purpose, change detection task and continuous flash suppression (CFS) were used. CFS renders a highly visible image invisible. In CFS, one eye is presented with a static stimulus, while the other eye is presented with a series of rapidly changing stimuli, such as mondrian patterns. The result is that the static stimulus becomes suppressed from conscious awareness by the stimuli presented in the other eye. We used a customized device with smartphone and google cardboard instead of stereoscope to trigger CFS. In Experiment 1-1, we reenacted some study to validate our experimental setup. Our experimental setup produced the duration of stimulus suppression that were similar to those of preceding research. In Experiment 1-2, we reenacted a study for attention without consciousness using an customized device. The results showed that attention without consciousness more strongly work as a cue. We think that it is reasonable to use CFS treatment employing smartphone and google cardboard for a follow-up study. In Experiment 2, when performing the change detection task, we measured the effect size of consciousness and attention by manipulating the consciousness level of cue. We used the method in which everything but the variable of interest kept being fixed. That way, the difference this independent variable makes to the action of the entire system can be isolated. We found that there was significant difference of correct response rate on change detection performance among different consciousness level of cue. In this study, we investigated that not only the role of attention and consciousness were different also we were able to estimated the effect size.

  • PDF

A Study on u-CCTV Fire Prevention System Development of System and Fire Judgement (u-CCTV 화재 감시 시스템 개발을 위한 시스템 및 화재 판별 기술 연구)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qigui;Park, So-A;Kim, Myung-Jin;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.463-466
    • /
    • 2010
  • In this paper, CCTV based fire surveillance system should aim to development. Advantages and Disadvantages analyzed of Existing sensor-based fire surveillance system and video-based fire surveillance system. To national support U-City, U-Home, U-Campus, etc, spread the ubiquitous environment appropriate to fire surveillance system model and a fire judgement technology. For this study, Microsoft LifeCam VX-1000 using through the capturing images and analyzed for apple and tomato, Finally we used H.264. The client uses the Linux OS with ARM9 S3C2440 board was manufactured, the client's role is passed to the server to processed capturing image. Client and the server is basically a 1:1 video communications. So to multiple receive to video multicast support will be a specification. Is fire surveillance system designed for multiple video communication. Video data from the RGB format to YUV format and transfer and fire detection for Y value. Y value is know movement data. The red color of the fire is determined to detect and calculate the value of Y at the fire continues to detect the movement of flame.

  • PDF

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

Measuring the Quantities of Aquaculture Farming Facilities for Seaweed, Ear Shell and Fish Using High Resolution Aerial Images - A Case of the Wando Region, Jeollanamdo - (고해상 항공영상을 활용한 김, 전복, 어류 양식장 시설량의 산출 - 전라남도 완도지역을 대상으로 -)

  • Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.147-161
    • /
    • 2011
  • Korea is surrounded by sea on three sides. This country has been supplied with a variety of aquaculture products cultivated on shores. There have recently been a lot of studies to have better understanding of the correct location and quantity of aquaculture farms for seaweed, ear shells and fish that cover a wide area of sea. And it is necessary to use the geographic information system and remote sensing to detect the aquaculture farms in order to effectively manage them. This study uses higher resolution aerial images(25 centimeters) than satellite images of 2~2.5-meter resolution that have been ever used, to conduct an accuracy detection of aquaculture farming facilities. It chooses as the case study area the Wando region that has aquaculture farms for seaweed, ear shells and fish. Aerial photos of the island were obtained in this study and an image correction of them was conducted. A spatial database was then constructed in this study and the detection of aquaculture farming facilities was performed. An analysis of facilities inside and outside the permitted areas reveals that there has been an increase in the facilities of seaweed and ear shell aquaculture farms outside the permitted areas. And also it tells that because the facilities of fish aquaculture farms have turned into those of ear shell aquaculture farms, there has been a decrease in permitted facilities, facilities detected on the basis of aerial images, and facilities outside the permitted area. It will be necessary to continuously control and manage the unpermitted facilities, regarding the increase in the facilities inside and outside the permitted area for seaweed and ear shell aquaculture farms. Because the facilities of aquaculture farms cover a wide range of areas(sea) in this manner, it is more effective to depend on high resolution aerial images than a field survey to detect and calculate the facilities. This study comes up with a plan for using aerial images to detect the location and the quantity of the fish aquaculture facilities and then effectively manage them.

The Suggestion of LINF Algorithm for a Real-time Face Recognition System (실시간 얼굴인식 시스템을 위한 새로운 LINF 알고리즘의 제안)

  • Jang Hye-Kyoung;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, we propose a new LINF(Linear Independent Non-negative Factorization) algorithm for real-time face recognition systea This system greatly consists of the two parts: 1) face extraction part; 2) face recognition part. In the face extraction Part we applied subtraction image, the detection of eye and mouth region , and normalization method, and then in the face recognition Part we used LINF in extracted face candidate region images. The existing recognition system using only PCA(Principal Component Analysis) showed low recognition rates, and it was hard in the recognition system using only LDA(Linear Discriminants Analysis) to apply LDA directly when the training set is small. To overcome these shortcomings, we reduced dimension as the matrix that had non-negative value to be different from former eigenfaces and then applied LDA to the matrix in the proposed system We have experimented using self-organized DAIJFace database and ORL database offered by AT(')T laboratory in Cambridge, U.K. to evaluate the performance of the proposed system. The experimental results showed that the proposed method outperformed PCA, LDA, ICA(Independent Component Analysis) and PLMA(PCA-based LDA mixture algorithm) method within the framework of recognition accuracy.

Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1 (초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계)

  • Kim, Se-Jin;Ko, Jung-Hui;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.

Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images (사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Park, Hee-Chul;Ahn, Jong-Ho;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jin-Sung;Han, Young-Yih;Lim, Do-Hoon;Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.28 no.3
    • /
    • pp.155-165
    • /
    • 2010
  • Purpose: In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimentional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Materials and Methods: Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Results: Medians of inter-fractional variation for twenty patients were 0.00 cm (range, -0.50 to 0.90 cm), 0.00 cm (range, -2.40 to 1.60 cm), and 0.00 cm (range, -1.10 to 0.50 cm) in the X (transaxial), Y (superior-inferior), and Z (anterior-posterior) directions, respectively. Significant inter-fractional variations over 0.5 cm were observed in four patients. Min addition, the median tidal amplitude differences between 4DCTs and the gated orthogonal setup images were -0.05 cm (range, -0.83 to 0.60 cm), -0.15 cm (range, -2.58 to 1.18 cm), and -0.02 cm (range, -1.37 to 0.59 cm) in the X, Y, and Z directions, respectively. Large differences of over 1 cm were detected in 3 patients in the Y direction, while differences of more than 0.5 but less than 1 cm were observed in 5 patients in Y and Z directions. Median intra-fractional variation was 0.00 cm (range, -0.30 to 0.40 cm), -0.03 cm (range, -1.14 to 0.50 cm), 0.05 cm (range, -0.30 to 0.50 cm) in the X, Y, and Z directions, respectively. Significant intra-fractional variation of over 1 cm was observed in 2 patients in Y direction. Conclusion: Gated setup images provided a clear image quality for the detection of organ motion without a motion artifact. Significant intra- and inter-fractional variation and tidal amplitude differences between 4DCT and gated setup images were detected in some patients during the radiation treatment period, and therefore, should be considered when setting up the target margin. Monitoring of positional uncertainty and its adaptive feedback system can enhance the accuracy of treatments.

Study on sea fog detection near Korea peninsula by using GMS-5 Satellite Data (GMS-5 위성자료를 이용한 한반도 주변 해무탐지 연구)

  • 윤홍주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.875-884
    • /
    • 2000
  • Sea fog/stratus is very difficult to detect because of the characteristics of air-sea interaction and locality ,and the scantiness of the observed data from the oceans such as ships or ocean buoys. The aim of our study develops new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggests the technics of its continuous detection. In this study, atmospheric synoptic patterns on sea fog day of May, 1999 are classified; cold air advection type(OOUTC, May 10, 1999) and warm air advection type(OOUTC, May 12, 1999), respectively, and we collected two case days in order to analyze variations of water vapor at Osan observation station during May 9-10, 1999.So as to detect daytime sea fog/stratus(OOUTC, May 10, 1999), composite image, visible accumulated histogram method and surface albedo method are used. The characteristic value during day showed A(min) .20% and DA < 10% when visible accumulated histogram method was applied. And the sea fog region which is detected is similar in composite image analysis and surface albedo method. Inland observation which visibility and relative humidity is beneath 1Km and 80%, respectively, at OOUTC, May 10,1999; Poryoung for visble accumulated histogram method and Poryoung, Mokp'o and Kangnung for surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), IR accumulated histogram method and Maximum brightness temperature method are used, respectively. Maxium brightness temperature method dectected sea fog better than IR accumulated histogram method with the charateristic value that is T_max < T_max_trs, and then T_max is beneath 700hPa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which is detected by Maxium brighness temperature method was similar to the result of National Oceanic and Atmosheric Administratio/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference), but usually visibility and relative humidity are not agreed well in inland.

  • PDF

LASPI: Hardware friendly LArge-scale stereo matching using Support Point Interpolation (LASPI: 지원점 보간법을 이용한 H/W 구현에 용이한 스테레오 매칭 방법)

  • Park, Sanghyun;Ghimire, Deepak;Kim, Jung-guk;Han, Youngki
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.932-945
    • /
    • 2017
  • In this paper, a new hardware and software architecture for a stereo vision processing system including rectification, disparity estimation, and visualization was developed. The developed method, named LArge scale stereo matching method using Support Point Interpolation (LASPI), shows excellence in real-time processing for obtaining dense disparity maps from high quality image regions that contain high density support points. In the real-time processing of high definition (HD) images, LASPI does not degrade the quality level of disparity maps compared to existing stereo-matching methods such as Efficient LArge-scale Stereo matching (ELAS). LASPI has been designed to meet a high frame-rate, accurate distance resolution performance, and a low resource usage even in a limited resource environment. These characteristics enable LASPI to be deployed to safety-critical applications such as an obstacle recognition system and distance detection system for autonomous vehicles. A Field Programmable Gate Array (FPGA) for the LASPI algorithm has been implemented in order to support parallel processing and 4-stage pipelining. From various experiments, it was verified that the developed FPGA system (Xilinx Virtex-7 FPGA, 148.5MHz Clock) is capable of processing 30 HD ($1280{\times}720pixels$) frames per second in real-time while it generates disparity maps that are applicable to real vehicles.