• 제목/요약/키워드: image data compression

검색결과 563건 처리시간 0.025초

Comparison of Digital Mammography and Digital Breast Tomosynthesis (디지털 유방촬영기기와 3차원 디지털 유방단층영상합성기기의 비교연구)

  • Kim, Ye-Seul;Park, Hye-Suk;Choi, Jae-Gu;Choi, Young-Wook;Park, Jun-Ho;Lee, Jae-Jun;Kwak, Su-Bin;Kim, Eun-Hye;Kim, Ju-Yeon;Jung, Hyun-Jung;Lee, Haeng-Hwa;Bae, Gyu-Won;Lee, Mi-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • 제23권4호
    • /
    • pp.261-268
    • /
    • 2012
  • Breast cancer is the second leading cause of women cancer death in Korea. The key for reducing disease mortality is early detection. Although digital mammography (DM) has been credited as one of the major reasons for the early detection to decrease in breast cancer mortality observed in the last 20 years, DM is far from perfect for several limitations. Digital breast tomosynthesis (DBT) is expected to overcome some inherent limitations of conventional mammography caused by overlapping of normal tissue and pathological tissue during the standard 2D projections for the improved lesion margin visibility and early breast cancer detection. In this study, we compared a DM system and DBT system acquired with different thickness of breast phantom. We acquired breast phantom data with same average glandular dose (AGD) from 1 mGy to 4 mGy under same experimental condition. The contrast, micro-calcification measurement accuracy and observer study were conducted with breast phantom images. As a result, the higher accuracy of lesion detection with DBT system compared to DM system was demonstrated in this study. Furthermore, the pain of patients caused by severe compression can be reduced with DBT system. In conclusion, the results indicated that DBT system play an important role in breast cancer detection.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • 제27권3호
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Wavelet Transform-based Face Detection for Real-time Applications (실시간 응용을 위한 웨이블릿 변환 기반의 얼굴 검출)

  • 송해진;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • 제30권9호
    • /
    • pp.829-842
    • /
    • 2003
  • In this Paper, we propose the new face detection and tracking method based on template matching for real-time applications such as, teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Since the main purpose of paper is to track a face regardless of various environments, we use template-based face tracking method. To generate robust face templates, we apply wavelet transform to the average face image and extract three types of wavelet template from transformed low-resolution average face. However template matching is generally sensitive to the change of illumination conditions, we apply Min-max normalization with histogram equalization according to the variation of intensity. Tracking method is also applied to reduce the computation time and predict precise face candidate region. Finally, facial components are also detected and from the relative distance of two eyes, we estimate the size of facial ellipse.