• Title/Summary/Keyword: image analysis method

Search Result 4,284, Processing Time 0.031 seconds

Digital Image Quality Assessment Based on Standard Normal Deviation

  • Park, Hyung-Ju;Har, Dong-Hwan
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.20-30
    • /
    • 2015
  • We propose a new method that specifies objective image quality factors by evaluating an image quality measurement model using random images. In other words, No-Reference variables are used to evaluate the quality of an original image without using any reference for comparison. 1000 portrait images were collected from a web gallery with votes constituting over 30 recommendation values. The bottom-up data collecting process was used to calculate the following image quality factors: total range, average, standard deviation, normalized distribution, z-score, preference percentage. A final grade is awarded out of 100 points, and this method ranks and grades the final estimated image quality preference in terms of total image quality factors. The results of the proposed image quality evaluation model consist of the specific dynamic range, skin tone R, G, B, L, A, B, and RSC contrast. We can present the total for the expected preference points as the average of the objective image qualities. Our proposed image quality evaluation model can measure the preferences for an actual image using a statistical analysis. The results indicate that this is a practical image quality measurement model that can extract a subject's preferred image quality.

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

Piecewise Image Denoising with Multi-scale Block Region Detector based on Quadtree Structure (쿼드트리 기반의 다중 스케일 블록 영역 검출기를 통한 구간적 영상 잡음 제거 기법)

  • Lee, Jeehyun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • This paper presents a piecewise image denoising with multi-scale block region detector based on quadtree structure for effective image restoration. Proposed piecewise image denoising method suggests multi-scale block region detector (MBRD) by dividing whole pixels of a noisy image into three parts, with regional characteristics: strong variation region, weak variation region, and flat region. These regions are classified according to total pixels variation between multi-scale blocks and are applied principal component analysis with local pixel grouping, bilateral filtering, and structure-preserving image decomposition operator called relative total variation. The performance of proposed method is evaluated by Experimental results. we can observe that region detection results generated by the detector seems to be well classified along the characteristics of regions. In addition, the piecewise image denoising provides the positive gain with regard to PSNR performance. In the visual evaluation, details and edges are preserved efficiently over the each region; therefore, the proposed method effectively reduces the noise and it proves that it improves the performance of denoising by the restoration process according to the region characteristics.

Development of Automatic Crack Detection System for Concrete Structure Using Image Processing Method (이미지 분석기법을 이용한 콘크리트 구조물의 균열 검출 시스템 개발)

  • Lee, Ho Beom;Kim, Jong Woo;Jang, Il Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.64-77
    • /
    • 2012
  • In this study, the crack detecting system with digital image processing techniques based on the mathematical morphology method was developed to detect cracks in concrete structures. In the developed system, the image combining technique of reconstructing multiple images as an entire single image considering efficient management of analysis results was applied as an additional module. The developed system was verified through a field test with the cracked concrete culvert and the crack width of 0.2 mm was able to be detected in the 40m span. In the image analysis, the difference between calculated crack width and actual crack width were less than 0.08mm. For image combination in the stitching test of pattern images, the stitched image was identical with the original picture of entire subject in the visual perception level.

Hierarchical Cluster Analysis Histogram Thresholding with Local Minima

  • Sengee, Nyamlkhagva;Radnaabazar, Chinzorig;Batsuuri, Suvdaa;Tsedendamba, Khurel-Ochir;Telue, Berekjan
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • In this study, we propose a method which is based on "Image segmentation by histogram thresholding using hierarchical cluster analysis"/HCA/ and "A nonparametric approach for histogram segmentation"/NHS/. HCA method uses that all histogram bins are one cluster then it reduces cluster numbers by using distance metric. Because this method has too many clusters, it is more computation. In order to eliminate disadvantages of "HCA" method, we used "NHS" method. NHS method finds all local minima of histogram. To reduce cluster number, we use NHS method which is fast. In our approach, we combine those two methods to eliminate disadvantages of Arifin method. The proposed method is not only less computational than "HCA" method because combined method has few clusters but also it uses local minima of histogram which is computed by "NHS".

Object Slippage and Rotation Sensing Method in Tactile Image (Tactile 영상에서 물체 움직임 감지 기법)

  • 이영재
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.10
    • /
    • pp.643-654
    • /
    • 2003
  • This paper proposes slippage and rotation sensing method in tactile image of robot griper. To overcome the demerits of inaccurate taxel positional sensing generated by previous moment method and edge & line method according to constraints of taxet number changing or minimum taxel number, the proposed method classified the sensing method into two classes such as pixel status analysis and decision factor determination. The decision factor determines taxel threshold for filtering and sensing method choice based on moment method and edge & line method. Computer simulations and experiment result show that the proposed method enhances the slippage and rotation sensing than previous methods for tactile image.

  • PDF

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.

Image processing method of two-phase bubbly flow using ellipse fitting algorithm (최적 타원 생성 알고리즘 기반 2상 기포 유동 영상 처리 기법)

  • Myeong, Jaewon;Cho, Seolhee;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • In this study, an image processing method for the measurement of two-phase bubbly flow is developed. Shadowgraphy images obtained by high-speed camera are used for analysis. Some bubbles are generated as single unit and others are overlapped or clustered. Single bubbles can be easily analyzed using parameters such as bubble shape, centroid, and area. But overlapped bubbles are difficult to transform clustered bubbles into segmented bubbles. Several approaches were proposed for the bubble segmentation such as Hough transform, connection point method and watershed. These methods are not enough for bubble segmentation. In order to obtain the size distribution of bubbles, we present a method of splitting overlapping bubbles using watershed and approximating them to ellipse. There is only 5% error difference between manual and automatic analysis. Furthermore, the error can be reduced down to 1.2% when a correction factor is used. The ellipse fitting algorithm developed in this study can be used to measure bubble parameters accurately by reflecting the shape of the bubbles.

Automated Facial Wrinkle Segmentation Scheme Using UNet++

  • Hyeonwoo Kim;Junsuk Lee;Jehyeok, Rew;Eenjun Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2333-2345
    • /
    • 2024
  • Facial wrinkles are widely used to evaluate skin condition or aging for various fields such as skin diagnosis, plastic surgery consultations, and cosmetic recommendations. In order to effectively process facial wrinkles in facial image analysis, accurate wrinkle segmentation is required to identify wrinkled regions. Existing deep learning-based methods have difficulty segmenting fine wrinkles due to insufficient wrinkle data and the imbalance between wrinkle and non-wrinkle data. Therefore, in this paper, we propose a new facial wrinkle segmentation method based on a UNet++ model. Specifically, we construct a new facial wrinkle dataset by manually annotating fine wrinkles across the entire face. We then extract only the skin region from the facial image using a facial landmark point extractor. Lastly, we train the UNet++ model using both dice loss and focal loss to alleviate the class imbalance problem. To validate the effectiveness of the proposed method, we conduct comprehensive experiments using our facial wrinkle dataset. The experimental results showed that the proposed method was superior to the latest wrinkle segmentation method by 9.77%p and 10.04%p in IoU and F1 score, respectively.