• Title/Summary/Keyword: image analysis algorithm

Search Result 1,480, Processing Time 0.031 seconds

Tire tread pattern classification using gray level cooccurrence matrix for the binary image (이치화 영상에 대한 계조치 동시발생행렬을 이용한 타이어 접지 패턴의 분류)

  • 박귀태;김민기;김진헌;정순원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.100-105
    • /
    • 1992
  • Texture is one of the important characteristics that has been used to identify objects or regions of interest in an image. Tire tread patterns can be considered as a kind of texture, and these are classified with a texture analysis method. In this sense, this paper proposes a new algorithm for the classification of tire tread pattern. For the classification, cooccurrence matrix for the binary image is used. The performances are tested by experimentally 8 different tire tread pattern and the robustness is examined by including some kinds on noise.

  • PDF

Radar Image Analysis for Detection of Shape of Voids in or under Concrete Slabs (레이다 탐사에 의한 소공동의 단면형상 복원방법에 관한 연구)

  • 박석균
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.791-796
    • /
    • 1997
  • Deterioration of pavements or tunnels primarily from the existence of voids under the pavements or tunnel linings. To detect these voids effectively by non-destructive testes, a method using radar was proposed. In this research, the detection of shape of voids by radar image processing is investigate. The experiments and simulation were conducted to detect voids in or under concrete pavements for tunnel linings) with reinforcing bars. From the results, the fundamental algorithm for tracing the voids, improving the horizontal resolution of the object image and detecting shape of objects, was verified.

  • PDF

의료영상진단기의 현황과 전망

  • 조장희
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.106-108
    • /
    • 1989
  • A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid eland cells image that was diagnosed as normal and abnormal (two types of abnormal: follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. A9 a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11% was obtained for Thyroid Gland cells.

  • PDF

A study on Sequential Intelligent DSP System using Image Data (영상 데이터를 이용한 순차적인 지능형 영상 분석 DSP 시스템의 연구)

  • Chang, Il-Sik;Kang, In-Goo;Jeon, Ji-Hye;Park, Goo-Man
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2064-2068
    • /
    • 2010
  • In this paper, we introduced a sequential intelligent image analysis system(SIIAS). This system is implemented using PTZ camera with intelligent analysis algorithm and TI's Davinci DM6446. Enter, abandon, removal and cross functions are included in our system. These functions can be used individually or in combination for object monitoring and tracking. Sequential intelligent function processing is more efficient than the previous one by virtue of accurate observation, wide area monitoring and low cost.

  • PDF

A CLASSIFICATION FOR PANCHROMATIC IMAGERY BASED ON INDEPENDENT COMPONENT ANALYSIS

  • Lee, Ho-Young;Park, Jun-Oh;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.485-487
    • /
    • 2003
  • Independent Component Analysis (ICA) is used to generate ICA filter for computing feature vector for image window. Filters that have high discrimination power are selected to classify image from these ICA filters. Proposed classification algorithm is based on probability distribution of feature vector.

  • PDF

Image Evaluation Analysis of CT Examination for Pedicle Screw Insertion (척추경 나사못 삽입술 CT검사의 영상평가 분석)

  • Hwang, Hyung-Suk;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • The purpose of this study was to insert a pedicle screw into a pig thoracic vertebrae, a general CT scan(Non MAR), and a thoracic axial image obtained with the Metallic Artifact Reduction for Orthopedic Implants (O-MAR) to reduce artifacts. The image obtained by reconstructing the algorithm (Standard, Soft, Bone, Detail) was used using the image J program. Signal to noise ratio(SNR) and contrast to noise ratio(CNR) were compared and analyzed by obtaining measured values based on the given equation. And this study was to investigate tube voltage and algorithm suitable for CT scan for thoracic pedicle screw insertion. As a result, when non-MAR was used, the soft algorithm showed the highest SNR and CNR at 80, 100, 120, and 140 kVp, On the other hand, when MAR was used, the standard algorithm showed the highest at 80 kVp, and the standard and soft algorithms showed similar values at 100 kVp. At 120 kVp, the Soft and Standard algorithms showed similar values, and at 140 kVp, the Soft algorithm showed the highest SNR and CNR. Therefore, when comparing Non-MAR and MAR, even if MAR was used, SNR and CNR did not increase in all algorithms according to the change in tube voltage. In conclusion, it is judged that it is advantageous to use the Soft algorithm at 80, 100, 120, and 140 kVp in Non MAR, the Standard algorithm at 80 and 100 kVp in MAR, and the Soft algorithm at 120 and 140 kVp. This study is expected to serve as an opportunity to further improve the quality of images by using selective tube voltage and algorithms as basic data to help evaluate images of pedicle screw CT scans in the future.

Implementation of Vision System for the Defect Inspection of Color Polyethylene (칼라 팔레트의 불량 검사를 위한 비전 시스템 구현)

  • 김경민;강종수;박중조;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.587-591
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the color product.(bad pallets) An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE color pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labelling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets. The labelling algorithm permits to separate all of the connected components appearing on the pallets. Labelling the connected regions of a image is a fundamental computation in image analysis and machine vision, with a large number of application. Also, we suggested vision processing program in window environment. Simulations and experimental results demonstrate the performance of the proposal algorithm.

  • PDF

A GPU-based Filter Algorithm for Noise Improvement in Realtime Ultrasound Images (실시간 초음파 영상에서 노이즈 개선을 위한 GPU 기반의 필터 알고리즘)

  • Cho, Young-Bok;Woo, Sung-Hee
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1207-1212
    • /
    • 2018
  • The ultrasound image uses ultrasonic pulses to receive the reflected waves and construct an image necessary for diagnosis. At this time, when the signal becomes weak, noise is generated and a slight difference in brightness occurs. In addition, fluctuation of image due to breathing phenomenon, which is the characteristic of ultrasound image, and change of motion in real time occurs. Such a noise is difficult to recognize and diagnose visually in the analysis process. In this paper, morphological features are automatically extracted by using image processing technique on ultrasound acquired images. In this paper, we implemented a GPU - based fast filter using a cloud big data processing platform for image processing. In applying the GPU - based high - performance filter, the algorithm was run with performance 4.7 times faster than CPU - based and the PSNR was 37.2dB, which is very similar to the original.

Recognition of Go Game Positions using Obstacle Analysis and Background Update (방해물 분석 및 배경 영상 갱신을 이용한 바둑 기보 기록)

  • Kim, Min-Seong;Yoon, Yeo-Kyung;Rhee, Kwang-Jin;Lee, Yun-Gu
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.724-733
    • /
    • 2017
  • Conventional methods of automatically recording Go game positions do not properly consider obstacles (hand or object) on a Go board during the Go game. If the Go board is blocked by obstacles, the position of a Go stone may not be correctly recognized, or the sequences of moves may be stored differently from the actual one. In the proposed algorithm, only the complete Go board image without obstacles is stored as a background image and the obstacle is recognized by comparing the background image with the current input image. To eliminate the phenomenon that the shadow is mistaken as obstacles, this paper proposes the new obstacle detection method based on the gradient image instead of the simple differential image. When there is no obstacle on the Go board, the background image is updated. Finally, the successive background images are compared to recognize the position and type of the Go stone. Experimental results show that the proposed algorithm has more than 95% recognition rate in general illumination environment.

An Efficient Method to Compute a Covariance Matrix of the Non-local Means Algorithm for Image Denoising with the Principal Component Analysis (영상 잡음 제거를 위한 주성분 분석 기반 비 지역적 평균 알고리즘의 효율적인 공분산 행렬 계산 방법)

  • Kim, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • This paper introduces the non-local means (NLM) algorithm for image denoising, and also introduces an improved algorithm which is based on the principal component analysis (PCA). To do the PCA, a covariance matrix of a given image should be evaluated first. If we let the size of neighborhood patches of the NLM S × S2, and let the number of pixels Q, a matrix multiplication of the size S2 × Q is required to compute a covariance matrix. According to the characteristic of images, such computation is inefficient. Therefore, this paper proposes an efficient method to compute the covariance matrix by sampling the pixels. After sampling, the covariance matrix can be computed with matrices of the size S2 × floor (Width/l) × (Height/l).