• Title/Summary/Keyword: image analysis algorithm

Search Result 1,480, Processing Time 0.027 seconds

Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation (재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발)

  • Kim, Seongsam;Nho, Hyunju;Shin, Dongyoon;Lee, Junwoo;Kim, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1195-1207
    • /
    • 2020
  • With the development of GeoWeb technology, 2D/3D spatial information services through the web are also has been used increasingly in the application of disaster management. This paper is suggested to construct a web-based 3D geo-spatial information mapping platform to visualize various spatial information collected at the disaster site in a web environment. This paper is presented a web-based geo-spatial information mapping service plan for the various types of 2D/3D spatial data and large-volume LiDAR point cloud data collected at the disaster accident site using HTML5/WebGL, web development standard technology and open source. Firstly, the collected disaster site survey 2D data is constructed as a spatial DB using GeoServer's WMS service and PostGIS provided an open source and rendered in a web environment. Secondly, in order to efficiently render large-capacity 3D point cloud data in a web environment, a Potree algorithm is applied to simplifies point cloud data into 2D tiles using a multi-resolution octree structure. Lastly, OpenLayers3 based 3D web mapping pilot system is developed for web visualization of 2D/3D spatial information by implementing basic and application functions for controlling and measuring 3D maps with Graphic User Interface (GUI). For the further research, it is expected that various 2D survey data and various spatial image information of a disaster site can be used for scientific investigation and analysis of disaster accidents by overlaying and visualizing them on a built web-based 3D geo-spatial information system.

Quality Assurance of Multileaf Collimator Using Electronic Portal Imaging (전자포탈영상을 이용한 다엽시준기의 정도관리)

  • ;Jason W Sohn
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.151-160
    • /
    • 2003
  • The application of more complex radiotherapy techniques using multileaf collimation (MLC), such as 3D conformal radiation therapy and intensity-modulated radiation therapy (IMRT), has increased the significance of verifying leaf position and motion. Due to thier reliability and empirical robustness, quality assurance (QA) of MLC. However easy use and the ability to provide digital data of electronic portal imaging devices (EPIDs) have attracted attention to portal films as an alternatives to films for routine qualify assurance, despite concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In this study, we developed method for daily QA of MLC using electronic portal images (EPIs). EPID availability for routine QA was verified by comparing of the portal films, which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed two-test patterns of dynamic MLC were applied for image acquisition. Quantitative off-line analysis using an edge detection algorithm enhanced the verification procedure as well as on-line qualitative visual assessment. In conclusion, the availability of EPI was enough for daily QA of MLC leaf position with the accuracy of portal films.

  • PDF

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 2. 확률적 후보 선택을 통한 실시간 프레임워크의 설계 및 구현)

  • Lee, Yeongjun;Kim, Tae Gyun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.164-173
    • /
    • 2014
  • In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.

Towards a Pedestrian Emotion Model for Navigation Support (내비게이션 지원을 목적으로 한 보행자 감성모델의 구축)

  • Kim, Don-Han
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.197-206
    • /
    • 2010
  • For an emotion retrieval system implementation to support pedestrian navigation, coordinating the pedestrian emotion model with the system user's emotion is considered a key component. This study proposes a new method for capturing the user's model that corresponds to the pedestrian emotion model and examines the validity of the method. In the first phase, a database comprising a set of interior images that represent hypothetical destinations was developed. In the second phase, 10 subjects were recruited and asked to evaluate on navigation and satisfaction toward each interior image in five rounds of navigation experiments. In the last phase, the subjects' feedback data was used for of the pedestrian emotion model, which is called ‘learning' in this study. After evaluations by the subjects, the learning effect was analyzed by the following aspects: recall ratio, precision ratio, retrieval ranking, and satisfaction. Findings of the analysis verify that all four aspects significantly were improved after the learning. This study demonstrates the effectiveness of the learning algorithm for the proposed pedestrian emotion model. Furthermore, this study demonstrates the potential of such pedestrian emotion model to be well applicable in the development of various mobile contents service systems dealing with visual images such as commercial interiors in the future.

  • PDF

Performance Analysis of Matching Cost Functions of Stereo Matching Algorithm for Making 3D Contents (3D 콘텐츠 생성에서의 스테레오 매칭 알고리즘에 대한 매칭 비용 함수 성능 분석)

  • Hong, Gwang-Soo;Jeong, Yeon-Kyu;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.9-15
    • /
    • 2013
  • Calculating of matching cost is an important for efficient stereo matching. To investigate the performance of matching process, the concepts of the existing methods are introduced. Also we analyze the performance and merits of them. The simplest matching costs assume constant intensities at matching image locations. We consider matching cost functions which can be distinguished between pixel-based and window-based approaches. The Pixel-based approach includes absolute differences (AD) and sampling-intensitive absolute differences (BT). The window-based approach includes the sum of the absolute differences, the sum of squared differences, the normalized cross-correlation, zero-mean normalized cross-correlation, census transform, and the absolute differences census transform (AD-Census). We evaluate matching cost functions in terms of accuracy and time complexity. In terms of the accuracy, AD-Census method shows the lowest matching error ratio (the best solution). The ZNCC method shows the lowest matching error ratio in non-occlusion and all evaluation part. But it performs high matching error ratio at the discontinuities evaluation part due to blurring effect in the boundary. The pixel-based AD method shows a low complexity in terms of time complexity.

A new approach to enhancement of ground penetrating radar target signals by pulse compression (파형압축 기법에 의한 GPR탐사 반사신호 분해능 향상을 위한 새로운 접근)

  • Gaballah, Mahmoud;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2009
  • Ground penetrating radar (GPR) is an effective tool for detecting shallow subsurface targets. In many GPR applications, these targets are veiled by the strong waves reflected from the ground surface, so that we need to apply a signal processing technique to separate the target signal from such strong signals. A pulse-compression technique is used in this research to compress the signal width so that it can be separated out from the strong contaminated clutter signals. This work introduces a filter algorithm to carry out pulse compression for GPR data, using a Wiener filtering technique. The filter is applied to synthetic and field GPR data acquired over a buried pipe. The discrimination method uses both the reflected signal from the target and the strong ground surface reflection as a reference signal for pulse compression. For a pulse-compression filter, reference signal selection is an important issue, because as the signal width is compressed the noise level will blow up, especially if the signal-to-noise ratio of the reference signal is low. Analysis of the results obtained from simulated and field GPR data indicates a significant improvement in the GPR image, good discrimination between the target reflection and the ground surface reflection, and better performance with reliable separation between them. However, at the same time the noise level slightly increases in field data, due to the wide bandwidth of the reference signal, which includes the higher-frequency components of noise. Using the ground-surface reflection as a reference signal we found that the pulse width could be compressed and the subsurface target reflection could be enhanced.

Colour Appearance Modelling based on Background Lightness and Colour Stimulus Size in Displays (디스플레이에서 배경의 밝기와 색채 자극의 크기에 따른 컬러 어피어런스 모델링)

  • Hong, Ji Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2018
  • This study was conducted to reproduce digital colour based on the lightness of the background and size of the colour stimulus so that colour can be similarly perceived under different conditions. With the evolution of display technologies, display devices of various sizes can now reproduce more accurate colour and enhanced images, thus affecting the overall quality of display images. This study reproduced digital colour by considering the visual characteristics of the digital media environment. To accomplish this, we developed a colour appearance model which distinguishes the properties of foveal and peripheral vision. The proposed model is based on existing research on the lightness of the background and size of the colour stimulus. Based on experimental results, an analysis of variance was performed in order to develop the colour appearance model. The algorithm and modelling were verified based on the proposed model. In addition, to apply this model to display technologies, a practical colour control system and a method for handling complex input images were developed. Through this research, colour conversion errors which might occur when the input image is converted to fit a specific display size are resolved from the perspective of the human visual system. As a result, more accurate colour can be displayed and enhanced images can be reproduced.

Welfare Interface using Multiple Facial Features Tracking (다중 얼굴 특징 추적을 이용한 복지형 인터페이스)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.

Study of Sensor Technology Analysis and Site Application Model for 3D-based Global Modeling of Construction Field (건설 시공현장의 3D기반 광대역 모델링을 위한 Sensor 기술 분석과 향후 현장적용 모델 연구)

  • Kwon, Hyuk-Do;Koh, Min-Hyeok;Yoon, Su-Won;Kwon, Soon-Wook;Chin, Sang-Yoon;Kim, Yea-Sang
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.938-942
    • /
    • 2007
  • The importance of process improvement under construction has arisen from recent issue, lower productivity in the construction site. The various 3D modeling program is utilized in the procedure of construction as an alternative solution. However, it's still shortage of the consideration about a specific technical application. The purpose of the study in this paper is helpful to improve the productivity of construction site using 3D realization of constructing place as one of extensive modeling technologies, which leads to not only efficient management of construction site allowing people to check the real time situation in the place but also the revitalization of information flow about building process control and prgress, Therefore, I research into modeling algorithm and extensive construction site realization technology. 3D realization of building place would reduce the safety concerns by providing the real time information about construction site, and it could help to access easily to similar project through collecting and appling the database of sites. Furthermore it can be an opportunity to develop the procedure of production in construction industry and to upgrade the image of this field.

  • PDF

Modeling of Visual Attention Probability for Stereoscopic Videos and 3D Effect Estimation Based on Visual Attention (3차원 동영상의 시각 주의 확률 모델 도출 및 시각 주의 기반 입체감 추정)

  • Kim, Boeun;Song, Wonseok;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.609-620
    • /
    • 2015
  • Viewers of videos are likely to absorb more information from the part of the screen that attracts visual attention. This fact has led to the visual attention models that are being used in producing and evaluating videos. In this paper, we investigate the factors that are significant to visual attention and the mathematical form of the visual attention model. We then estimated the visual attention probability using the statistical design of experiments. The analysis of variance (ANOVA) verifies that the motion velocity, distance from the screen, and amount of defocus blur affect human visual attention significantly. Using the response surface modeling (RSM), we created a visual attention score model that concerns the three factors, from which we calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are directly applied to existing gradient based 3D effect perception measurement. By giving weights according to our VAPs, our algorithm achieves more accurate measurement than the existing method. The performance of the proposed measurement is assessed by comparing them with subjective evaluation as well as with existing methods. The comparison verifies that the proposed measurement outperforms the existing ones.