• Title/Summary/Keyword: image analysis algorithm

Search Result 1,480, Processing Time 0.029 seconds

A Novel Automatic Algorithm for Selecting a Target Brain using a Simple Structure Analysis in Talairach Coordinate System

  • Koo B.B.;Lee Jong-Min;Kim June Sic;Kim In Young;Kim Sun I.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.129-132
    • /
    • 2005
  • It is one of the most important issues to determine a target brain image that gives a common coordinate system for a constructing population-based brain atlas. The purpose of this study is to provide a simple and reliable procedure that determines the target brain image among the group based on the inherent structural information of three-dimensional magnetic resonance (MR) images. It uses only 11 lines defined automatically as a feature vector representing structural variations based on the Talairach coordinate system. Average characteristic vector of the group and the difference vectors of each one from the average vector were obtained. Finally, the individual data that had the minimum difference vector was determined as the target. We determined the target brain image by both our algorithm and conventional visual inspection for 20 healthy young volunteers. Eighteen fiducial points were marked independently for each data to evaluate the similarity. Target brain image obtained by our algorithm showed the best result, and the visual inspection determined the second one. We concluded that our method could be used to determine an appropriate target brain image in constructing brain atlases such as disease-specific ones.

Broken Image Selection Algorithm based on Histogram Analysis (히스토그램 분석 기반 파손 영상 선별 알고리즘)

  • Cho, Jin-Hwan;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.72-74
    • /
    • 2021
  • Recently, the spread of deep learning environments has increased the importance of dataset generation. Therefore, data is being augmented using GAN for efficient data set generation. However, several problems have been found in data generated using GAN, such as problems that occur in the early stages of learning and pixel breakage occurring in the generated image. In this paper, we intend to implement an image data selection algorithm to solve various problems arising from the existing GAN. The broken image screening algorithm was implemented to analyze the histogram distribution in the image and determine whether to store the generated image according to whether the result value satisfies the specified threshold value.

  • PDF

Real Time Maker Detection Algorithm for Motion Analysis (운동분석 및 측정을 위한 실시간 마커 인식 알고리즘)

  • Lee, Seung-Min;Lee, Ju-Yeon;Hwang, Jun;Kim, Mun-Hwa
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.5
    • /
    • pp.1367-1376
    • /
    • 1998
  • In this paper we propose an real time marker detection algorithm for motion analysis both in 2 dimensions and 3 dimensions with CCD camera and rfame grabber only which has no image processor. The main algorithm consists of the following 3 algorithms; 1) the tracing algorithm that makes it possible to predict the expected marker location by narrowing the searching boundary, 2) the searching algorithm that detects the marker in the expected boundary using Ad-hoc previous screen search technique, tornado search method rotate diagonal search method search technique, 3) the algorithm that finds the central point of the detected marker. We try to narrow the searching boundary for real time processing. Also, it is able to find the central point of the detected marker much faster than typical contour tracing algorithm.

  • PDF

A Study on Face Image Recognition Using Feature Vectors (특징벡터를 사용한 얼굴 영상 인식 연구)

  • Kim Jin-Sook;Kang Jin-Sook;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.897-904
    • /
    • 2005
  • Face Recognition has been an active research area because it is not difficult to acquire face image data and it is applicable in wide range area in real world. Due to the high dimensionality of a face image space, however, it is not easy to process the face images. In this paper, we propose a method to reduce the dimension of the facial data and extract the features from them. It will be solved using the method which extracts the features from holistic face images. The proposed algorithm consists of two parts. The first is the using of principal component analysis (PCA) to transform three dimensional color facial images to one dimensional gray facial images. The second is integrated linear discriminant analusis (PCA+LDA) to prevent the loss of informations in case of performing separated steps. Integrated LDA is integrated algorithm of PCA for reduction of dimension and LDA for discrimination of facial vectors. First, in case of transformation from color image to gray image, PCA(Principal Component Analysis) is performed to enhance the image contrast to raise the recognition rate. Second, integrated LDA(Linear Discriminant Analysis) combines the two steps, namely PCA for dimensionality reduction and LDA for discrimination. It makes possible to describe concise algorithm expression and to prevent the information loss in separate steps. To validate the proposed method, the algorithm is implemented and tested on well controlled face databases.

A study on the Flat Zone Length of Workpiece at Flexible Disk Grinder Cutting Process Measurement and Prediction using Image Processing (화상처리시스템을 이용한 유연성디스크 절삭가공에서 평면구간 측정 및 예측에 관한 연구)

  • Shin, Kwan Soo;Roh, Dae Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, the image processing for flexible disk grinding and the effect of the grinding conditions on the flat zone length of a workpiece are investigated, with the purpose of automating the grinding process. To accomplish this, three issues should be carefully studied. The first is finding the relationship between the flat zone length and the grinding conditions such as the cutting speed and feeding speed. The second is developing a neural network algorithm to predict the flat zone. The third is developing an image processing algorithm to measure the flat zone length of a workpiece. Slope analysis is used to determine straight and curved sections during the image processing. For verification, the estimated length and the length from the image processing are compared with the length measured by a projector. There is a minimum difference of 1.7% between the predicted and measured values. The results of this paper will be useful in compiling a database for process automation.

Development of SV30 Detection Algorithm and Turbidity Assumption Model using Image Analysis Method (이미지 분석기법을 이용한 SV30 자동감지방법 및 탁도 추정 모델 개발)

  • Choi, Soo-Jung;Kim, Ye-Jin;Yoom, Hoon-Sik;Cha, Jae-Hwan;Choi, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • Diagnosis on setteability based on human operator's experimental knowledge, which could be established by long term operation, is a limit factor to construction of automation control system in wastewater treatment plant. On-line SVI(Sludge Volume Index) analyzer was developed which can measure SV30 automatically by image capture and image analysis method. In this paper, information got by settling process was studied using On-line SVI analyzer for better operation & management of WWTPs. First, SV30 detection algorithm was developed using image capture and image analysis for settling test and it showed that automatic detection is feasible even if deflocculation and bulking was occurred. Second, turbidity assessment model was developed using image analysis.

IMAGE ENCRYPTION USING NONLINEAR FEEDBACK SHIFT REGISTER AND MODIFIED RC4A ALGORITHM

  • GAFFAR, ABDUL;JOSHI, ANAND B.;KUMAR, DHANESH;MISHRA, VISHNU NARAYAN
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.859-882
    • /
    • 2021
  • In the proposed paper, a new algorithm based on Nonlinear Feedback Shift Register (NLFSR) and modified RC4A (Rivest Cipher 4A) cipher is introduced. NLFSR is used for image pixel scrambling while modified RC4A algorithm is used for pixel substitution. NLFSR used in this algorithm is of order 27 with maximum period 227-1 which was found using Field Programmable Gate Arrays (FPGA), a searching method. Modified RC4A algorithm is the modification of RC4A and is modified by introducing non-linear rotation operator in the Key Scheduling Algorithm (KSA) of RC4A cipher. Analysis of occlusion attack (up to 62.5% pixels), noise (salt and pepper, Poisson) attack and key sensitivity are performed to assess the concreteness of the proposed method. Also, some statistical and security analyses are evaluated on various images of different size to empirically assess the robustness of the proposed scheme.

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

Image Compression using Modified Zerotree of the Embedded Zerotree Wavelet (EZW의 수정된 제로트리를 이용한 영상 압축)

  • Eom, Je-Duk;Lee, Ji-Bum;Goo, Ha-Sung;Kim, Jin-Tae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.442-449
    • /
    • 2002
  • EZW (Embedded Zerotree Wavelet) is an efficient algorithm to encode wavelet-transformed image. In this algorithm, each coefficient of wavelet transformed image is given one of the specific symbols and encoded according to its significant priority. In this paper, we analysis the occurrence conditions of symbols in EZW and propose a modified EZW algorithm. In the proposed algorithm, the significance of an IZ (Isolated Zero) symbol is determined by the additional conditions as well as its absolute value. The occurrence of IZ symbols is decreased and the required bits for insignificant IZ symbols is saved, so we obtained good quality of the reconstructed image.

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF