• Title/Summary/Keyword: image algorithm

Search Result 8,952, Processing Time 0.034 seconds

A Segmentation Method for Counting Microbial Cells in Microscopic Image

  • Kim, Hak-Kyeong;Lee, Sun-Hee;Lee, Myung-Suk;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.224-230
    • /
    • 2002
  • In this paper, a counting algorithm hybridized with an adaptive automatic thresholding method based on Otsu's method and the algorithm that elongates markers obtained by the well-known watershed algorithm is proposed to enhance the exactness of the microcell counting in microscopic images. The proposed counting algorithm can be stated as follows. The transformed full image captured by CCD camera set up at microscope is divided into cropped images of m$\times$n blocks with an appropriate size. The thresholding value of the cropped image is obtained by Otsu's method and the image is transformed into binary image. The microbial cell images below prespecified pixels are regarded as noise and are removed in tile binary image. The smoothing procedure is done by the area opening and the morphological filter. Watershed algorithm and the elongating marker algorithm are applied. By repeating the above stated procedure for m$\times$n blocks, the m$\times$n segmented images are obtained. A superposed image with the size of 640$\times$480 pixels as same as original image is obtained from the m$\times$n segmented block images. By labeling the superposed image, the counting result on the image of microbial cells is achieved. To prove the effectiveness of the proposed mettled in counting the microbial cell on the image, we used Acinetobacter sp., a kind of ammonia-oxidizing bacteria, and compared the proposed method with the global Otsu's method the traditional watershed algorithm based on global thresholding value and human visual method. The result counted by the proposed method shows more approximated result to the human visual counting method than the result counted by any other method.

Retinex Algorithm Improvement for Color Compensation in Back-Light Image Efficently (역광 이미지의 효율적인 컬러 색상 보정을 위한 Retinex 알고리즘의 성능 개선)

  • Kim, Young-Tak;Yu, Jae-Hyoung;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • This paper proposes a new algorithm that improve color component of compensated image using Retinex method for back-light image. A back-light image has two regions, one of the region is too bright and the other one is too dark. If an back-light image is improved contrast using Retinex method, it loses color information in the part of brightness of the image. In order to make up loss information, proposed algorithm adds color components from original image. The histogram can be divided three parts that brightness, darkness, midway using K-mean (k=3) algorithm. For the brightness, it is used color information of the original image. For the darkness, it is converted using by Retinex method. The midway region is mixed between original image and Retinex result image in the ratio of histogram. The ratio is determined by distance from dark area. The proposed algorithm was tested on nature back-light images to evaluate performance, and the experimental result shows that proposed algorithm is more robust than original Retinex algorithm.

Feasibility Study of Non Local Means Noise Reduction Algorithm with Improved Time Resolution in Light Microscopic Image (광학 현미경 영상 기반 시간 분해능이 향상된 비지역적 평균 노이즈 제거 알고리즘 가능성 연구)

  • Lee, Youngjin;Kim, Ji-Youn
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.623-628
    • /
    • 2019
  • The aim of this study was to design fast non local means (FNLM) noise reduction algorithm and to confirm its application feasibility in light microscopic image. For that aim, we acquired mouse first molar image and compared between previous widely used noise reduction algorithm and our proposed FNLM algorithm in acquired light microscopic image. Contrast to noise ratio, coefficient of variation, and no reference-based evaluation parameter such as natural image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE) were used in this study. According to the result, our proposed FNLM noise reduction algorithm can achieve excellent result in all evaluation parameters. In particular, it was confirmed that the NIQE and BRISQUE evaluation parameters for analyzing the overall morphologcal image of the tooth were 1.14 and 1.12 times better than the original image, respectively. In conclusion, we demonstrated the usefulness and feasibility of FNLM noise reduction algorithm in light microscopic image of small animal tooth.

An Efficient Algorithm for Mapping 360° Circular Images to Planar Images (360° 원형영상을 평면영상에 매핑하기 위한 효율적인 알고리즘)

  • Lee, Young-Ji;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.68-73
    • /
    • 2018
  • In this paper, we propose an efficient algorithm for mapping a $360^{\circ}$ circular image to a planar image. The proposed algorithm consists of obtaining size of the planar image, calculating the distance between the camera and the planar image, calculating horizontal angle of camera and planar image, calculating vertical angle between camera and planar image, calculating the position of a pixel that matches pixels in a $360^{\circ}$ circular image to pixels in a planar image. Experiments were performed to evaluate the efficient algorithm for mapping the proposed $360^{\circ}$ circular image to the plane image. The reconstruction rate of the mapped plane image was confirmed 99% and the image quality of the mapped plane image was confirmed 72%. Since the results were higher than the standard values of commercial software, the effectiveness of the algorithm was confirmed.

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

Algorithm for Dithering Color Images (칼라 이미지 디더링 알고리즘에 관한 연구)

  • Lee, Tae-Kyoung;Choi, Doo-Il;Cho, Woo-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.581-584
    • /
    • 2002
  • In this study, an algorithm for dithering true color image to 8-bit indexded color image using Artificial Neural Network was proposed. An adaptive vector quantization algorithm based on Artificial neural network was proposed for dithering color images. To evaluate the proposed algorithm, Mean Square Error(MSE) and quality between original image and dithered image was compared to those of other algorithm. As a results, MSE of proposed algorithm was lower than that of other algorithm used in commercial application and quality of dithered image was also highly improved.

  • PDF

An Adaptive Color Enhancement Algorithm using the Preferred Color Reconstruction (선호색 보정을 이용한 화질 향상 알고리즘)

  • Yang, Kyoung-Ok;Hwang, Bo-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • In this paper, we propose an adaptive color enhancement algorithm. It is used for the flat panel displays (FPDs) such as LCD, PDP, and so on. The proposed algorithm consists of an adaptive linear approximation CDF(Cumulative Density Function) algorithm and an adaptive saturation enhancement algorithm. The one is for contrast enhancement which prevents an image from the distortion by luminance transient of an input image. The other is the algorithm which improves the saturation without the contour artifact and over-saturation, whose problems are generated during the enhancing saturation. In addition, it allows to achieve the high quality image using the saturation enhancement method for a preferred color of original image. Visual test and standard deviation of their histograms have been applied to evaluate the resultant output images of the proposed algorithm.

Directional Interpolation Based on Improved Adaptive Residual Interpolation for Image Demosaicking

  • Liu, Chenbo
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1479-1494
    • /
    • 2020
  • As an important part of image processing, image demosaicking has been widely researched. It is especially necessary to propose an efficient interpolation algorithm with good visual quality and performance. To improve the limitations of residual interpolation (RI), based on RI algorithm, minimalized-Laplacian RI (MLRI), and iterative RI (IRI), this paper focuses on adaptive RI (ARI) and proposes an improved ARI (IARI) algorithm which obtains more distinct R, G, and B colors in the images. The proposed scheme fully considers the brightness information and edge information of the image. Since the ARI algorithm is not completely adaptive, IARI algorithm executes ARI algorithm twice on R and B components according to the directional difference, which surely achieves an adaptive algorithm for all color components. Experimental results show that the improved method has better performance than other four existing methods both in subjective assessment and objective assessment, especially in the complex edge area and color brightness recovery.

An Efficient Vehicle Image Compensation Algorithm based on Histogram Equalization (히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2192-2200
    • /
    • 2015
  • In this paper, we propose an efficient vehicle image compensation algorithm based on Histogram Equalization. The proposed a vehicle image compensation algorithm was elimination to the vehicle image shake using motion compensation and motion estimation. And, algorithm was calculated the histogram of pixel values from each sub-image by dividing the image as the constant size areas in order to image enhancement. Also, it had enhancement to the image by adjusting the gradient. The proposed algorithm was evaluate the difference between of performance and time, image by applied to the IP, and were confirmed the image enhancement with removing of vehicle camera image shake. In this paper, the proposed vehicle image enhancement algorithm was demonstrated effectiveness when compared to existing vehicle image stabilization, because the elimination of shake for the vehicle images used real-time processing without using a memory. And it was obtained the reduction effect of the computation time by the calculated through block matching, and obtained the better restoration result for naturalness of the image with the lowest noise.

Extended Snake Algorithm Using Color Variance Energy (컬러 분산 에너지를 이용한 확장 스네이크 알고리즘)

  • Lee, Seung-Tae;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.83-92
    • /
    • 2009
  • In this paper, an extended snake algorithm using color variance energy is proposed for segmenting an interest object in color image. General snake algorithm makes use of energy in image to segment images into a interesting area and background. There are many kinds of energy that can be used by the snake algorithm. The efficiency of the snake algorithm is depend on what kind of energy is used. A general snake algorithm based on active contour model uses the intensity value as an image energy that can be implemented and analyzed easily. But it is sensitive to noises because the image gradient uses a differential operator to get its image energy. And it is difficult for the general snake algorithm to be applied on the complex image background. Therefore, the proposed snake algorithm efficiently segment an interest object on the color image by adding a color variance of the segmented area to the image energy. This paper executed various experiments to segment an interest object on color images with simple or complex background for verifying the performance of the proposed extended snake algorithm. It shows improved accuracy performance about 12.42 %.