The Transactions of the Korea Information Processing Society
/
v.6
no.12
/
pp.3694-3702
/
1999
OSL algorithm has an advantage that repeated algorithm is easily derived, even though penalty function which has a complicated transcendental function. In order to solve this problem, we suggested MPEMG algorithm. However, though this algorithm extend convergence rate of smoothing constant, it include the problem that is not faster than OSL algorithm in the convergence rate increasing penalized log-likelihood. Accordingly, in this paper, we will suggest SMOSLG digital image restoration algorithm which is fast in the convergence rate as well as extend convergence region of smoothing constant. And also we will study the usefulness of algorithm suggested through digital image simulation.
Kwon, Hee Yong;Kim, Min Su;Choi, Kyung Wan;Kwack, Ho Jic;Yu, Suk Hyun
Journal of Korea Multimedia Society
/
v.20
no.6
/
pp.845-852
/
2017
In this paper, we propose a binarization algorithm using LVQ-Merge clustering method for fast and accurate extraction of cells from cell images. The proposed method clusters pixel data of a given image by using LVQ to remove noise and divides the result into two clusters by applying a hierarchical clustering algorithm to improve the accuracy of binarization. As a result, the execution speed is somewhat slower than that of the conventional LVQ or Otsu algorithm. However, the results of the binarization have very good quality and are almost identical to those judged by the human eye. Especially, the bigger and the more complex the image, the better the binarization quality. This suggests that the proposed method is a useful method for medical image processing field where high-resolution and huge medical images must be processed in real time. In addition, this method is possible to have many clusters instead of two cluster, so it can be used as a method to complement a hierarchical clustering algorithm.
Journal of the Institute of Convergence Signal Processing
/
v.14
no.1
/
pp.33-38
/
2013
In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.434-436
/
2022
For 4th industrial revolution and the development of various communication media, unmanned and automation are rapidly progressing in various fields. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. Accordingly, the importance of preprocessing in a system operating based on an image is increasing, and an algorithm for effectively removing noise from an image is attracting attention. In this paper, we propose a filtering algorithm using noise judgment and a segmentation mask in a complex noise environment. The proposed algorithm calculates the final output by switching the segmentation mask suitable for filtering by performing noise judgment on the pixel values of the input image. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared and evaluated with the existing filter algorithm.
In this paper, we proposed a new algorithm for individual tooth region segmentation on tooth color images. The proposed algorithm used oral cavity model based on structural feature of tooth and new boundary of watershed algorithm. First, the gray scale image is obtained with emphasized tooth regions from the color images and unnecessary regions are removed on tooth images. Next, the image enhancement of tooth images is implemented using the proposed oral cavity model, and the individual tooth regions are segmented by watershed algorithm on the enhanced images. Boundary and seeds necessary to watershed algorithm are applied boundary of binary image using minimum thresholding and region maximum value. In order to evaluate performance of proposed algorithm, we conduct experiment to compare conventional algorithm with proposed algorithm. As a result of experiment, we confirmed that the proposed algorithm is more improved detection ratio than conventional algorithm at molar regions and the tooth region detection performance is improved by preventing overlap detection on oral cavity.
Ha-Seon Jeong;Ie-Jun Kim;Su-Bin Park;Suyeon Park;Yunji Oh;Woo-Seok Lee;Kang-Hyeon Seo;Youngjin Lee
Journal of radiological science and technology
/
v.47
no.1
/
pp.39-48
/
2024
In this study, we optimized the FNLM algorithm through a simulation study and applied it to a phantom scanned by low-dose CT to evaluate whether the FNLM algorithm can be used to obtain improved image quality images. We optimized the FNLM algorithm with MASH phantom and FASH phantom, which the algorithm was applied with MATLAB, increasing the smoothing factor from 0.01 to 0.05 with increments of 0.001 and measuring COV, RMSE, and PSNR values of the phantoms. For both phantom, COV and RMSE decreased, and PSNR increased as the smoothing factor increased. Based on the above results, we optimized a smoothing factor value of 0.043 for the FNLM algorithm. Then we applied the optimized FNLM algorithm to low dose lung CT and lung CT under normal conditions. In both images, the COV decreased by 55.33 times and 5.08 times respectively, and we confirmed that the quality of the image of low dose CT applying the optimized FNLM algorithm was 5.08 times better than the image of lung CT under normal conditions. In conclusion, we found that the smoothing factor of 0.043 among the factors of the FNLM algorithm showed the best results and validated the performance by reducing the noise in the low-quality CT images due to low dose with the optimized FNLM algorithm.
Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
한국공간정보시스템학회:학술대회논문집
/
2007.06a
/
pp.139-144
/
2007
Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.
Transactions of the Korean Society of Mechanical Engineers B
/
v.26
no.10
/
pp.1445-1450
/
2002
In the present study, a new pattern recognition algorithm was proposed to size spray particles using the boundary curvature information. Conceptually, this algorithm has an advantage over the others because it can identify the particle size and shape simultaneously, and also can separate the overlapped particles more effectively. Curvature of a boundary was obtained from the change of the slopes of two neighboring segments at the corresponding part. The algorithm developed in this study was tested by using an artificially prepared image of a group of spherical particles which were either isolated or overlapped. Particle sizes obtained from the measured curvatures agreed well with the true values. By detecting abrupt changes of the curvature along the image boundary, the element particles could be separated out from their overlapped images successfully.
This paper presents a new algorithm that extracts lung region in X-Rays and enhance.j the region. Comparing to prior algorithms that enhance whole X-Ray image, this algorithm leads more effective results. For this algorithm extracts lung region first, and enhances the lung region excluding parameters of other region. For choosing optimal threshold, we compare OTSU's mothod with the proposed method. We obtain lung boundary using contour following algorithm and Rray level searching method in gray level rescaled image. We Process histogram equalization in lung region and obtain enhanced lung image. By using the proposed algorithm, we obtain lung region effectively in chest X-Ray that need in medical image diagnostic system.
Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.