• Title/Summary/Keyword: image algorithm

Search Result 8,998, Processing Time 0.036 seconds

SMOSLG Algorithm for Digital Image Restoration (디지털 영상복원을 위한 SMOSLG 알고리즘)

  • Song, Min-Koo;Yum, Joon-Keun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3694-3702
    • /
    • 1999
  • OSL algorithm has an advantage that repeated algorithm is easily derived, even though penalty function which has a complicated transcendental function. In order to solve this problem, we suggested MPEMG algorithm. However, though this algorithm extend convergence rate of smoothing constant, it include the problem that is not faster than OSL algorithm in the convergence rate increasing penalized log-likelihood. Accordingly, in this paper, we will suggest SMOSLG digital image restoration algorithm which is fast in the convergence rate as well as extend convergence region of smoothing constant. And also we will study the usefulness of algorithm suggested through digital image simulation.

  • PDF

LVQ_Merge Clustering Algorithm for Cell Image Extraction (세포 영상 추출을 위한 LVQ_Merge 군집화 알고리즘)

  • Kwon, Hee Yong;Kim, Min Su;Choi, Kyung Wan;Kwack, Ho Jic;Yu, Suk Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.6
    • /
    • pp.845-852
    • /
    • 2017
  • In this paper, we propose a binarization algorithm using LVQ-Merge clustering method for fast and accurate extraction of cells from cell images. The proposed method clusters pixel data of a given image by using LVQ to remove noise and divides the result into two clusters by applying a hierarchical clustering algorithm to improve the accuracy of binarization. As a result, the execution speed is somewhat slower than that of the conventional LVQ or Otsu algorithm. However, the results of the binarization have very good quality and are almost identical to those judged by the human eye. Especially, the bigger and the more complex the image, the better the binarization quality. This suggests that the proposed method is a useful method for medical image processing field where high-resolution and huge medical images must be processed in real time. In addition, this method is possible to have many clusters instead of two cluster, so it can be used as a method to complement a hierarchical clustering algorithm.

Multi-Small Target Tracking Algorithm in Infrared Image Sequences (적외선 연속 영상에서 다중 소형 표적 추적 알고리즘)

  • Joo, Jae-Heum
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • In this paper, we propose an algorithm to track multi-small targets in infrared image sequences in case of dissipation or creation of targets by using the background estimation filter, Kahnan filter and mean shift algorithm. We detect target candidates in a still image by subtracting an original image from an background estimation image, and we track multi-targets by using Kahnan filter and target selection. At last, we adjust specific position of targets by using mean shift algorithm In the experiments, we compare the performance of each background estimation filters, and verified that proposed algorithm exhibits better performance compared to classic methods.

Filtering Algorithm using Noise Judgment and Segmentation Mask for Mixed Noise Removal (복합잡음 제거를 위한 잡음판단과 분할마스크를 이용한 필터링 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.434-436
    • /
    • 2022
  • For 4th industrial revolution and the development of various communication media, unmanned and automation are rapidly progressing in various fields. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. Accordingly, the importance of preprocessing in a system operating based on an image is increasing, and an algorithm for effectively removing noise from an image is attracting attention. In this paper, we propose a filtering algorithm using noise judgment and a segmentation mask in a complex noise environment. The proposed algorithm calculates the final output by switching the segmentation mask suitable for filtering by performing noise judgment on the pixel values of the input image. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared and evaluated with the existing filter algorithm.

  • PDF

Tooth Region Segmentation by Oral Cavity Model and Watershed Algorithm (구강구조모델과 워터쉐드를 이용한 치아영역 분할)

  • Na, S.D.;Lee, G.H.;Lee, J.H.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1135-1146
    • /
    • 2013
  • In this paper, we proposed a new algorithm for individual tooth region segmentation on tooth color images. The proposed algorithm used oral cavity model based on structural feature of tooth and new boundary of watershed algorithm. First, the gray scale image is obtained with emphasized tooth regions from the color images and unnecessary regions are removed on tooth images. Next, the image enhancement of tooth images is implemented using the proposed oral cavity model, and the individual tooth regions are segmented by watershed algorithm on the enhanced images. Boundary and seeds necessary to watershed algorithm are applied boundary of binary image using minimum thresholding and region maximum value. In order to evaluate performance of proposed algorithm, we conduct experiment to compare conventional algorithm with proposed algorithm. As a result of experiment, we confirmed that the proposed algorithm is more improved detection ratio than conventional algorithm at molar regions and the tooth region detection performance is improved by preventing overlap detection on oral cavity.

Optimization of Non-Local Means Algorithm in Low-Dose Computed Tomographic Image Based on Noise Level and Similarity Evaluations (노이즈 레벨 및 유사도 평가 기반 저선량 조건의 전산화 단층 검사 영상에서의 비지역적 평균 알고리즘의 최적화)

  • Ha-Seon Jeong;Ie-Jun Kim;Su-Bin Park;Suyeon Park;Yunji Oh;Woo-Seok Lee;Kang-Hyeon Seo;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • In this study, we optimized the FNLM algorithm through a simulation study and applied it to a phantom scanned by low-dose CT to evaluate whether the FNLM algorithm can be used to obtain improved image quality images. We optimized the FNLM algorithm with MASH phantom and FASH phantom, which the algorithm was applied with MATLAB, increasing the smoothing factor from 0.01 to 0.05 with increments of 0.001 and measuring COV, RMSE, and PSNR values of the phantoms. For both phantom, COV and RMSE decreased, and PSNR increased as the smoothing factor increased. Based on the above results, we optimized a smoothing factor value of 0.043 for the FNLM algorithm. Then we applied the optimized FNLM algorithm to low dose lung CT and lung CT under normal conditions. In both images, the COV decreased by 55.33 times and 5.08 times respectively, and we confirmed that the quality of the image of low dose CT applying the optimized FNLM algorithm was 5.08 times better than the image of lung CT under normal conditions. In conclusion, we found that the smoothing factor of 0.043 among the factors of the FNLM algorithm showed the best results and validated the performance by reducing the noise in the low-quality CT images due to low dose with the optimized FNLM algorithm.

The Application of the Spectral Similarity Scale Algorithm and Expectation-Maximization for Unsupervised Change Detection using Hyperspectral Image (하이퍼스펙트럴 영상의 무감독 변화탐지를 위한 SSS 알고리즘과 기대최대화 기법의 적용)

  • Kim, Yong-Hyun;Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.139-144
    • /
    • 2007
  • Recording data in hundreds of narrow contiguous spectral intervals, hyperspectral images have provided the opportunity to detect small differences in material composition. But a limitation of a hyperspectral image is the signal to noise ratio (SNR) lower than that of a multispectral image. This paper presents the efficiency of Spectral Similarity Scale (SSS) in change detection of hyperspectral image and the experiment was performed with Hyperion data. SSS is an algorithm that objectively quantifies differences between reflectance spectra in both magnitude and direction dimensions. The thresholds for detecting the change area were determined through Expectation-Maximization (EM) algorithm. The experimental result shows that the SSS algorithm and EM algorithm are efficient enough to be applied to the unsupervised change detection of hyperspectral images.

  • PDF

Development of Image Processing Algorithm Using Boundary Curvature Information in Particle Size Measurement (영상 처리 기법에서 곡률을 이용한 입경 측정 알고리듬의 개발)

  • 김유동;이상용;김상수
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1445-1450
    • /
    • 2002
  • In the present study, a new pattern recognition algorithm was proposed to size spray particles using the boundary curvature information. Conceptually, this algorithm has an advantage over the others because it can identify the particle size and shape simultaneously, and also can separate the overlapped particles more effectively. Curvature of a boundary was obtained from the change of the slopes of two neighboring segments at the corresponding part. The algorithm developed in this study was tested by using an artificially prepared image of a group of spherical particles which were either isolated or overlapped. Particle sizes obtained from the measured curvatures agreed well with the true values. By detecting abrupt changes of the curvature along the image boundary, the element particles could be separated out from their overlapped images successfully.

An Automatic Extraction of the Lung Region in X- Rays (흉부방사선 영상의 흉부영역 자동검출에 관한 연구)

  • 김용만;장국현
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.331-342
    • /
    • 1989
  • This paper presents a new algorithm that extracts lung region in X-Rays and enhance.j the region. Comparing to prior algorithms that enhance whole X-Ray image, this algorithm leads more effective results. For this algorithm extracts lung region first, and enhances the lung region excluding parameters of other region. For choosing optimal threshold, we compare OTSU's mothod with the proposed method. We obtain lung boundary using contour following algorithm and Rray level searching method in gray level rescaled image. We Process histogram equalization in lung region and obtain enhanced lung image. By using the proposed algorithm, we obtain lung region effectively in chest X-Ray that need in medical image diagnostic system.

  • PDF

A Fast Algorithm for Target Detection in High Spatial Resolution Imagery

  • Kim Kwang-Eun
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.7-14
    • /
    • 2006
  • Detection and identification of targets from remotely sensed imagery are of great interest for civilian and military application. This paper presents an algorithm for target detection in high spatial resolution imagery based on the spectral and the dimensional characteristics of the reference target. In this algorithm, the spectral and the dimensional information of the reference target is extracted automatically from the sample image of the reference target. Then in the entire image, the candidate target pixels are extracted based on the spectral characteristics of the reference target. Finally, groups of candidate pixels which form isolated spatial objects of similar size to that of the reference target are extracted as detected targets. The experimental test results showed that even though the algorithm detected spatial objects which has different shape as targets if the spectral and the dimensional characteristics are similar to that of the reference target, it could detect 97.5% of the targets in the image. Using hyperspectral image and utilizing the shape information are expected to increase the performance of the proposed algorithm.

  • PDF