• Title/Summary/Keyword: image acquisition subsystem

Search Result 7, Processing Time 0.021 seconds

Software Analysis and Design of the Image Acquisition Subsystem Using the Unified Modeling Language

  • Yom, Jae-Hong
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.85-93
    • /
    • 2001
  • Geospatial database, which is the basis for Geo-Spatial Information Systems, is produced by conventional mapping methods. Recently, with increased demand for digital forms of the geospatial database, studies are carried out to automate its production. The automated mapping system is composed of the image acquisition subsystem, positioning subsystem, point referencing subsystem and the visualization subsystem. The image acquisition subsystem is the most important part of the overall production line because it is the starting point and will affect all subsequent processes. This paper presents a software analysis and design of the image acquisition subsystem. The design was carried out using the Unified Modeling Language which is a modeling method used extensively in the software engineering field.

  • PDF

Implementation of Image Monitoring system using High Speed Camera for Overhead Contact Wire (고속 카메라를 이용한 전차선 형상 검측 시스템 구현)

  • Cho, Hyeon-Young;Kwon, Sam-Young;Lee, Ki-Won;Park, Hyun-June;Na, Hae-Kyoung;Ko, Byeong-Hun;Park, Young
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1483-1487
    • /
    • 2006
  • In electric railway, image monitoring using high speed camera provides reliable, timely information of wear and geometry status, important in taking decisions for overhead contact wire maintenance. The contribution of this research is the development of a simple real-time monitoring system for use in measurement subsystem of contact wire and geometry of overhead contact wire in electric railway. The system has been consists of a high speed CMOS camera with resolution $1024{\times}1280$ pixels, line type laser source and PC-based image acquisition system with PCI Express slot. Vision acquisition software have been used in application programming interface for image acquisition, display, and storage with a frequency of sampling of 500 acquisitions per second.

  • PDF

SETTING OF HPA OUTPUT POWER IN COMS DATS CONSIDERING IMD CHARACTERISTICS

  • Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.204-207
    • /
    • 2006
  • COMS will receive two different meteorological signals in S-Band from IDACS (Image Data Acquisition and Control System) in ground station before transmitting them in L-Band to user station. MODCS (Meteorological Ocean Data Communication Subsystem) in satellite released the value of required PFD (Power Flux Density) to receive two signals. Thus, DATS (Data Acquisition and Transmission Subsystem) needs to send two signals to satellite with a satisfied EIRP. The value of minimum HPA (High Power Amplifier) output power was estimated by subtracting antenna directional gain and path loss between antenna and HPA from the needed EIRP in this paper. Besides the minimum output power of HPA, the maximum output power was also calculated with considering IMD (Inter-Modulation Distortion) characteristics. IMD is always occurred in the output of HPA when LRIT and HRIT are amplified by using single HPA as COMS application. In this paper, the setting of maximum output power was determined when the IMD of modelled HPA was corresponded to the requirement of MODCS.

  • PDF

Integeation Test of Coms Image Data Acquisition and Control System (통신해양기상위성 송수신자료전처리시스템 통합 시험)

  • Lim, Hyun-Su;Ahn, Sang-Il;Park, Durk-Jong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.471-480
    • /
    • 2008
  • COMS Image Data Acquisition and Control System (IDACS) plays a key role in real time ground processing of Meteorological and Ocean observation data. Beyond processing, it serves processed image data and additional data to end users through the spacecraft in the internationally recommended format. The IDACS will be installed at three location (MSC, KOSC, and SOC) and automatically operated 24h/365days. After the IDACS subsystem tests and inter -subsystem interface tests had been completed in the first half of 2008, the acceptance test which was a comprehensive test performed as an integrated form to verify function performance and operational requirements. This paper introduces test objective, preparation, and major result of the COMS IDACS acceptance test.

Implementation of Real-Time Monitoring System for Overhead Contact Wire in Electric Railway (전차선로 검측을 위한 실시간 화상처리 시스템 구현)

  • Park, Young;Cho, Young-Hyeon;Lee, Ki-Won;Kwon, Sam-Young;Park, Hyun-Jun;Jang, Dong-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.543-544
    • /
    • 2006
  • This paper describes a simple real-time monitoring system for use in measurement subsystem of contact wire and geometry of overhead contact wire in electric railway. The system has been consists of a high speed CMOS camera with resolution $1024\;{\times}\;1280$ pixels, line type laser source with a power equal to 300 mW, and PC-based image acquisition system with PCI Express slot. National instrument LabVIEW (8.0) and vision acquisition software have been used in application programming interface for image acquisition, display, and storage with a frequency of sampling of 500 acquisitions per second.

  • PDF

Analysis on Processing Timeline of COMS LHGS Design

  • Bae, Hee-Jin;Koo, In-Hoi;Seo, Seok-Bae;Ahn, Sang-Il;Kim, Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.216-219
    • /
    • 2006
  • This paper analyzes on LHGS (LRIT/HRIT Generation Subsystem) processing timeline for COMS LHGS design. The LHGS shall transmit LRIT/HRIT (Low Rate Information Transmission/ High Rate Information Transmission) data to the users within 15 minutes after the end of the image acquisition. So, this paper performs experiment using MTSAT-1R LRIT/HRIT (11 days) and calculates minimum LHGS processing time. Only HRIT FD (Full Disk) image is considered in this paper because data size of HRIT FD image is the largest. As a result of experiment, COMS LHGS should be able to receive MI Level 1B product within 157 seconds at least.

  • PDF

JPEG Performance analysis for COMS LHGS Design (통신해양 기상위성 LHGS 설계를 위한 JPEG 성능 분석)

  • Bae Hee-Jin;Seo Seok-Bae;Ahn Sang-Il;Jung Sung-Chul;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.381-385
    • /
    • 2006
  • 2008년 발사를 목표로 개발되고 있는 통신해양기상위성(COMS: Communication, Ocean and Meteorological Satellite)는 기상 관측과 해양 관측 임무 및 통신 임무까지 수행하는 정지궤도 위성이다. 통신해양기상위성은 크게 탑재체와 지상국으로 나눌 수 있고 지상국은 다시 통신 임무를 위한 CTES(Communication Test Earth Station), 해양/기상 임무를 위한 IDACS(Image Acquisition and Control System), 그리고 위성 관제와 운영을 위한 SGCS(Satellite Ground Control System)로 구분된다. 이 중 IDACS의 서브시스템 중 하나인 LHGS(LRIT/HRIT Generation Subsystem)는 LRIT/HRIT(Low Rate Information Transmission/High Rate Information Transmission)를 생성하고 배포하는 기능을 가지고 있다. 관측 종료 후 LRIT/HRIT 전송 완료까지 15분 이내로 이루어져야 한다는 기상청의 요구사항을 만족하기 위해서 JPEG 압축 시간도 중요한 요소로 고려되어야 한다. 그래서 본 논문에서는 MTSAT에서 받은 LRIT/HRIT의 자료 처리를 바탕으로 lossless JPEG와 lossy JPEG의 압축 시간을 측정하여 압축률을 비교하여 성능 분석을 해보기로 한다. 이렇게 도출해낸 수치자료는 COMS LHGS 설계에 활용할 수 있다.

  • PDF