• Title/Summary/Keyword: image SNR

Search Result 497, Processing Time 0.029 seconds

Quality of Image and Exposure Dose According to kVp, mA and Iterative Reconstruction in Computed Tomography (전산화단층촬영에서 관전압과 관전류, 통계적 반복재구성법에 따른 화질과 피폭선량)

  • Cha, Sang-Young;Park, Jae-Yoon;Lee, Yong-Ki;Kim, Jeon-Hun;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.385-392
    • /
    • 2017
  • The purpose of this study is to investigate the image quality and exposure dose according to kVp and mAs in CT and to confirm improvement in image quality according to None IR and IR(Iterative Reconstruction) levels. Measurement results of image quality using Image J, HU(Hounsfield units) and BN(Background Noise) are decreased, while SNR(Signal to Noise Ratio) and $CTDI_{vol}$(CT dose index volume) are increased as the kVp increases and there was no change of BHU(Background Hounsfield units). BN was reduced due to increased kVp, while SNR and $CTDI_{vol}$ were increased. Also, the higher IR stage, the lower BN, SI(Signal Intensity) and HU while SNR was improved by about 10~60%. Based on this, when applying IR for clinical applications, it is necessary to finely adjust kVp and mA with a phased approach.

Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality (소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 영상 품질에 대한 고찰)

  • Nim Lee;Hyun-Hae Cho;So Mi Lee;Sun Kyoung You
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.240-252
    • /
    • 2023
  • Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients' ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts.

Clinical Experience with 3.0 T MR for Cardiac Imaging in Patients: Comparison to 1.5 T using Individually Optimized Imaging Protocols (장비 별 최적화된 영상 프로토콜을 이용한 환자에서의 3.0T 심장 자기공명영상의 임상경험: 1.5 T 자기공명영상과의 비교)

  • Ko, Jeong Min;Jung, Jung Im;Lee, Bae Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.83-90
    • /
    • 2013
  • Purpose : To report our clinical experience with cardiac 3.0 T MRI in patients compared with 1.5 T using individually optimized imaging protocols. Materials and Methods: We retrospectively reviewed 30 consecutive patients and 20 consecutive patients who underwent 1.5 T and 3 T cardiac MRI within 10 months. A comparison study was performed by measuring the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the image quality (by grading each sequence on a 5-point scale, regarding the presence of artifacts). Results: In morphologic and viability studies, the use of 3.0 T provided increase of the baseline SNRs and CNRs, respectively (T1: SNR 29%, p < 0.001, CNR 37%, p < 0.001; T2-SPAIR: SNR 13%, p = 0.068, CNR 18%, p = 0.059; viability imaging: SNR 45%, p = 0.017, CNR 37%, p = 0.135) without significant impairment of the image quality (T1: $3.8{\pm}0.9$ vs. $3.9{\pm}0.7$, p = 0.438; T2-SPAIR: $3.8{\pm}0.9$ vs. $3.9{\pm}0.5$, p = 0.744; viability imaging: $4.5{\pm}0.8$ vs. $4.7{\pm}0.6$, p = 0.254). Although the image qualities of 3.0 T functional cine images were slightly lower than those of 1.5 T images ($3.6{\pm}0.7$ vs. $4.2{\pm}0.6$, p < 0.001), the mean SNR and CNR at 3.0 T were significantly improved (SNR 143% increase, CNR 108% increase, p < 0.001). With our imaging protocol for 3.0 T perfusion imaging, there was an insignificant decrease in the SNR (11% decrease, p = 0.172) and CNR (7% decrease, p = 0.638). However, the overall image quality was significantly improved ($4.6{\pm}0.5$ vs. $4.0{\pm}0.8$, p = 0.006). Conclusion: With our experience, 3.0 T MRI was shown to be feasible for the routine assessment of cardiac imaging.

Study to Protocol of PET Acquisition Time for Patient Body Type in PET/CT (PET/CT 검사에서 환자체형에 따른 적정검사 프로토콜에 관한 고찰)

  • Cho, Seok Won;Ham, Joon-Chul;Kang, Chun Goo;Bahn, Young Kag;Lee, Seung Jae;Lim, Han Sang;Lee, Chang-Ho;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.72-77
    • /
    • 2013
  • Purpose: Whole-body PET using radiopharmaceutical is one of the imaging study methods for physiological changes of body. High specificity of the PET-CT examination is used to detect an early stages of cancer and metastatic cancer by imaging a physiological changes. During the imaging process, PET image has been characterized by a relatively low image quality due to its low sensitivity and the acquisition of random and scatter coincidences as well as patients figure. Therefore, the image quality as the changes of the acquisition times of patient weight was evaluated in this study. Materials and Methods: Thirty patients who presented to our hospital were enrolled. They were divided to normal, overweight, and obese group using BMI index, respectively. The patients with a liver disease and diabetes were excluded. $^{18}F-FDG$ was administered to the patients as 5.2 MBq per kg. After an hour from an injection, image acquisition was obtained as List mode in a part of liver in 1 bed. SNR (signal-to-noise ratio) of each groups acquisition times were confirmed from the calculated radiation counts and random fractions. The statistical significance of three groups was confirmed through one-way ANOVA test. On the basis of the counts of 2 minutes on normal group, the SNR of overweight group and obese group were compared. Results: The SNR were increased with loger aquisition time in 3 groups. In the condition of same acquisition time, the SNR had a statistical significance (P<0.05). The SNR were decreased to the normal, overweight, and obese, respectively. Liver activity had no significance difference on each group and RF had the significance differences (P<0.05). On the basis of the counts of 2 minutes on normal group, there were no statistical significance in a three minute acquisitions of overweight group and two minute acquisitions of obese group (P=0.150). Conclusion: In this study, the administrated amount of radiation dose did not adjust as the change of the patients weight. Increasing the acquisition time when the administration of the same amount of dose was able to get a good result of SNR. When the Based 2 minute on normal group, if overweight and obese case the increased acquisition time of 3 minute was able to obtain a similar SNR. On the basis of the normal group, the acquisition times of overweight and obese group were increased to 3 minutes per bed and the SNR were similar to the normal group.

  • PDF

NIIRS ESTIMATION USING THE GENERAL IMAGE-QUALITY EQUATION FOR MONITORING IMAGE DEGRADATION

  • Kim, Dong-Wook;Kim, Tae-Jung;Kim, Hee-Seob
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.53-56
    • /
    • 2008
  • Generally, the quality of satellite images is expressed by GSD (Ground Sample Distance), MTF (Modulation Transfer Function) and SNR (Signal to Noise Ratio). However, these factors are technology-oriented and do not explain interpretability of satellite images. We need a standardized index which shows standard of interpretability. In this study, we estimated NIIRS (National Imagery Interpretability Rating Scale) through the GIQE (General Image Quality Equation) which is able to judge image interpretability with the standardized index. Traditionally, NIIRS has been determined manually by specialized image analysts. We used the GIQE in order to reduce inefficiency and high costs cause by manual interpretation and to produce accurate NIIRS. For monitoring image degradation, we estimated GIQE physical parameters from image analysis and carried out time series analysis about the quality of the KOMPSAT-1 images. On all of the tests, we were able to identify the image degradation due to the changing time. This indicates that NIIRS derived from GIQE will be used for image degradation indicator.

  • PDF

Image Restoration in Digital Radiography Using Dual Sensor Wiener Filer (이중센서 위너필터를 이용한 디지탈 라디오 그라피 영상 복원)

  • Lee, Tae-Soo;Park, Kwang-Suk;Min, Byoumg-Goo;Lim, Jeong-Gee;Han, Man-Chung
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.293-302
    • /
    • 1989
  • A Dual Sensor Wiener Filter technique was used to improve the image quality of the scanning type digital radiographic system (resolution and SNR). In this method, two images were acquried simultaneously using two sensors with high and low resolution and SNR values. Using the cross Power spectrum between dual sensor outputs of the same chest radiographic image. we design a new type of Wiener Filter and implement it with fast algorithm. We compared the performance of this new dual sensor filter with conventional single sensor filters (Wiener Filter and Parametric Projec- tion Filter) . In simulation studies, it is shown that this new method has SNR improvement of 1-3 dB better than conventional filters.

  • PDF

SNR and PSNR measurements and analysis of median filtering for the removal of impulse noise from CR imaging

  • Hong, Seong-Il;Dong, Kyung-Rae;Ryu, Young-Hwan
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, the authors showed that the removal of impulse noise in CR images was implemented using variety of median filters and SNR/PSNR measurements. They used three kinds of medical images-hand, skull, and knee- for experimental results. But the noise in CR image was only the impulse noise. In real medical image, the noise of an image would be very different type. Therefore. the lack of experimental results using different noise in CR images is one flaw.

Comparison of PET/MR image quality with and without point spread function algorithm according to reconstruction type (재구성 방법(점 확산함수 적용 유무)에 따른 PET/MR 영상 평가)

  • Park, Chan Rok;Moon, Il Sang;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.43-45
    • /
    • 2018
  • Purpose In this study, we evaluated image by applying with and without point spread function algorithm(PSF) according to reconstruction type. Materials and Methods Biograph mMR (Siemens, Germany) was used as PET/MR scanner. For phantom study, we used NEMA IEC Body phantom maintaining radioactivity ratio (hotsphere:background = 8:1). To evaluate phantom image quality, percent contrast recovery and signal to noise ratio (SNR) were used by drawing ROI to 4 spheres. In clinical study, the 20 patients who underwent simultaneous PET/MR was selected and set the ROI at liver. we evaluated images as SNR. Results In the phantom results, The percent contrast recovery applying PSF algoritm was high 5 % compared to without PSF algoritm and SNR was also high 11 %. In the clinical study result, we confirmed that The SNR applying PSF algoritm was high 5 % compared to without PSF algoritm. Conclusion We need to simulate a lot of phantom study and clinical analysis to improve image quality for PET/MRI.

Optimal Flip Angle for T2-Weighted Effect in Micro 4.7T MRI SE Sequence (마이크로 4.7T MRI SE Sequence에서 T2강조효과를 위한 최적의 Flip Angle)

  • Lee, Sang-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.2
    • /
    • pp.113-117
    • /
    • 2019
  • The purpose of this study was to investigate the FA value which can produce the best T2-weighted images by measuring the signal intensity and noise according to the FA value change in the brain image and the abdominal image of the mouse using micro-MRI. Brain imaging and abdominal imaging of BALB / C mice weighing 20g were performed using 4.7T (Bruker BioSpin MRI GmbH) micro-MRI equipment, Turbo RARE-T2 (spin echo-T2) images were scanned at TR 3500 msec and TE 36 msec. The changes of the FA values were $60^{\circ}$, $80^{\circ}$, $100^{\circ}$, $120^{\circ}$, $140^{\circ}$, $160^{\circ}$ and $180^{\circ}$. We measured signal intensity according to FA values of ventricle and thalamus in brain imaging, The signal intensity of kidney and muscle around the kidney was measured in abdominal images. To obtain SNR and CNR, we measured the background signals of two different parts, not the tissue. In the brain (thalamus) image, the signal intensity of FA $100^{\circ}$ was 7,433 and SNR (6.49) was the highest. In the abdominal (kidney) image, the signal intensity was highest at 16,523 when FA was $120^{\circ}$, and the highest SNR was 8.54 when FA was $140^{\circ}$. The CNR value of the brain image was 1.38 at FA $60^{\circ}$ and gradually increased to 8.29 at FA $180^{\circ}$. The CNR value of the muscle adjacent to the kidney gradually increased from 2.36 when the FA value was $60^{\circ}$ and the highest value was 4,57 at the FA value $180^{\circ}$.