• Title/Summary/Keyword: image SNR

Search Result 498, Processing Time 0.027 seconds

Effect of Patient Size on Image Quality and Dose Reduction after Added Filtration in Digital Chest Tomosynthesis (부가필터를 적용한 디지털 흉부단층합성검사에서 환자 체형에 따른 화질 평가와 선량감소 효과)

  • Bok, Geun-Seong;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • To evaluate the effect of patient size on effective dose and image quality for Digital Chest Tomosynthesis(DTS) using additional 0.3 mm copper filtration. Eighty artificial nodules were placed in the thorax phantom("Lungman," Kyoto Kagaku, Japan), and Digital Chest Tomosynthesis(DTS) images of the phantom were acquired both with and without added 0.3 mm Cu filtration. To simulate patients of three sizes: small, average size and oversize, one or two 20-mm-thick layer of PMMA(polymethyl methacrylatek) blocks were placed on the phantom. The Effective dose was calculated using Monte Carlo simulations. Two evaluations of image quality methods have been employed. Three readers counted the number of nodules detected in the lung, and the measured contrast-to-noise ratios(CNRs) were used. Data were analyzed statistically. The ED reduced $26{\mu}Sv$ in a phantom, $33{\mu}Sv$ in one 20-mm-thick layer of PMMA block placed on the phantom, and $48{\mu}Sv$ in two 20-mm-thick layer of PMMA blocks placed on the phantom. The Effective dose(ED) differences between DTS with and without filtration were significant(p<0.05). In particular, when we used two 20-mm-thick layer of PMMA blocks placed on the phantom, the ED was significantly reduced by 36% compared with those without additional filtration. Nodule detection sensitivities were not different between with and without added filtration. Differences of CNRs were statistically insignificant(p>0.05). Use of additional filtration allows a considerable dose reduction during Digital Chest Tomosynthesis(DTS) without loss of image quality. In particular, additional filtration showed outstanding result for effective dose reduction on two 20-mm-thick layer of PMMA blocks placed on the phantom. It applies to overweight patients.

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

Optimization of Protocol for Injection of Iodinated Contrast Medium in Pediatric Thoracic CT Examination (소아 흉부 CT검사에서 조영제 주입에 관한 프로토콜의 최적화)

  • Kim, Yung-Kyoon;Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.879-887
    • /
    • 2019
  • The purpose of this study is to establish a physiological injection protocol according to body weight, in order to minimize amount of contrast medium and optimize contrast enhancement in pediatric patients performing thoracic CT examinations. The 80 pediatric patients under the age of 10 were studied. Intravenous contrast material containing 300 mgI/ml was used. The group A injected with a capacity of 1.5 times its weight, and groups B, C and D added 5 to 15 ml of normal saline with a 10% decrease in each. The physiologic model which can be calculated by weight about amount of injection of contrast medium and normal saline, flow rate and delay time were applied. To assess image quality, measured average HU value and SNR of superior vena cava, pulmonary artery, ascending and descending aorta, right and left atrium, right and left ventricle. CT numbers of subclavian vein and superior vena cava were compared to identify the effects of reducing artifacts due to normal saline. Comparing SNR according to the contrast medium injection protocol, significant differences were found in superior vena cava and pulmonary artery, descending aorta, right and left ventricle, and CT numbers showed significant differences in all organs. In particular, B group with a 10% decrease in contrast medium and an additional injection of saline showed a low degree of contrast enhancement in groups with a decrease of more than 20%. In addition, the group injected with normal saline greatly reduced contrast enhancement of subclavian vein and superior vena cava, and the beam hardening artifact by contrast medium was significantly attenuated. In conclusion, the application of physiological protocol for injection of contrast medium in pediatric thoracic CT examinations was able to reduce artifacts by contrast medium, prevent unnecessary use of contrast medium and improve the effect of contrast enhancement.

Study of Apparent Diffusion Coefficient Changes According to Spinal Disease in MR Diffusion-weighted Image

  • Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.146-149
    • /
    • 2017
  • In this study, we compared the standardized value of each signal intensity, the apparent diffusion coefficient (ADC) that digitizes the diffusion of water molecules, and the signal to noise ratio (SNR) using b value 0 400, 1400 ($s/mm^2$). From March 2013 to December 2013, patients with suspicion of simple compound fracture and metastatic spine cancer were included in the MR readout. We used a 1.5 Tesla Achieva MRI system and a Syn-Spine Coil. Sequence is a DWI SE-EPI sagittal (diffusion weighted imaging spin echo-echo planar imaging sagittal) image with b-factor ($s/mm^2$) 0, 400, 1400 were used. Data analysis showed ROI (Region of Interest) in diseased area with high SI (signal intensity) in diffusion-weighted image b value 0 ($s/mm^2$) Using the MRIcro program, each SI was calculated with images of b-value 0, 400, and 1400 ($s/mm^2$), ADC map was obtained using Metlab Software with each image of b-value, The ADC is obtained by applying the ROI to the same position. The standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of simple compression fractures were $0.47{\pm}0.04$ and $0.23{\pm}0.03$ and the standardized values ($SI_{400}/SI_0$, $SI_{400}/SI_0$) of the metastatic spine were $0.57{\pm}0.07$ and $0.32{\pm}0.08$ And the standardized values of the two diseases were statistically significant (p < 0.05). The ADC ($mm^2/s$) for b value 400 ($s/mm^2$) and 1400 ($s/mm^2$) of the simple compression fracture disease site were $1.70{\pm}0.16$ and $0.93{\pm}0.28$ and $1.24{\pm}0.21$ and $0.80{\pm}0.15$ for the metastatic spine. The ADC ($mm^2/s$) for b value 400($s/mm^2$) was statistically significant (p < 0.05) but the ADC ($mm^2/s$) for b value 1400 (p > 0.05). In conclusion, multi - b value recognition of signal changes in diffusion - weighted imaging is very important for the diagnosis of various spinal diseases.

Realization of the multi-phase level CGH according to the multi-channel encoding method using a PAL-SLM (PAL-SLM을 이용한 다채널 부호화 방법에 따른 다위상형 CGH의 광학적 구현)

  • Jung, Jong-Rae;Baek, Woon-Sik;Kim, Jung-Hoi;Kim, Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • We proposed more efficient encoding methods that can design a multi-channel multi-level phase only computer-generated hologram(CGH) that can reconstruct many objects simultaneously without a conjugate image. We used a fabrication technique for the pixel oriented CGH for designing the pattern of the proposed multi-channel CGH. We investigated the difference of the optical efficiency(η), mean square error(MSE) and signal-to-noise ratio(SNR) of multi-channel CGHs that were designed by three kinds of encoding methods according to the number of quantization phase levels, and we estimated the performance of the pattern of the proposed multi-channel CGH. Generally, as the number of input objects' reference patterns stored in the CGH is increased, the reconstruction quality of the CGH is degraded. But we observed through computer simulation that the diffraction efficiency of the 1-ch CGH is 70%, and those of the 2-ch, 4-ch, 8-ch CGHs are 62%, 62% and 63%. Therefore we found that the diffraction efficiencies of the multi-channel CGHs using the newly proposed encoding method are similar to that of 1-ch CGH. We implemented the CGH optically using a liquid crystal spatial light phase modulator that consisted of a PAL-SLM efficiently coupled with a XGA type LCD by an optical lens and an LD for illuminating the LCD. We discussed the output images that are reconstructed from the PAL-SLM.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Quantitative, qualitative Evaluation of Diffusion-Weighted MRI using Optimal b-value(s/mm2) for Female Pelvis (여성골반에 대한 최적의 b-value(s/mm2)를 이용한 확산강조 자기공명영상의 정량적, 성적 평가)

  • Goo, Eun-Hoe
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.361-368
    • /
    • 2013
  • The purpose of this study is to know the clinical usefulness of optimal b-values by quantitative, qualitative evaluation of DW-MRI for lesions of benignity and malignity of female pelvis. The b-values used in DWI were 600, 800, 1000, 1200, 1400($s/mm^2$). Mean SNR and CNR of myoma in b-value 800 were the highest result as $84.6{\pm}4.57$(p=0.024) and $50.13{\pm}5.47$(p=0.028), Mean SNR and CNR of cervical cancer were the highest result as $12.0{\pm}2.04$(p=0.047) and $10.6{\pm}1.24$(p=0.001), Mean ADC value in myoma and cervical cancer in b-value 800 were $1.19{\times}10^{-3}mm^2/s$(p=0.008), $0.96{\times}10^{-3}mm^2/s$(p=0.027). As a qualitative analysis, the delineation and conspicuity were the highest result as $4.02{\pm}0.18$(p=0.028), $4.39{\pm}0.25$(p=0.015) on b-value 800. DW-MRI is an important method, and the optimal b values is 800 $s/mm^2$ for differentiation between benign and malignant lesions of female pelvis.

Contrast Optimization using of Weight-based Injection Protocol in Pediatric Abdomen CT Examination (소아 복부 CT 검사에서 체중에 기반한 조영제 주입 프로토콜 적용에 따른 조영증강의 최적화)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.575-584
    • /
    • 2021
  • The aim of this study was to achieve optimal portal phase while reducing contrast medium by applying weight-based dose protocol compared to standard fixed dose protocol to performing of pediatric abdominal CT examination. Discovery 750HD (General Electric Medical Systems, Milwaukee, USA) was used, and a total of 167 children consisting of 85 men and 82 women under the age of 18 were studied. The group in which the 300 mgI/ml(Xenetix, Guerbet, France) contrast medium was fixedly injected at twice body weight and the group injected with physiological saline while gradually decreasing the injection amount by 10% while applying the weight-based protocol were distinguished. Also, the CT number and SNR of abdominal organs were compared and evaluated while changing the scan delay time. Subjective image quality of enhancement and beam-hardening artifacts of around the heart was assessed with five-point criterion. The group adapted weight-based protocol with 20% reduction in contrast medium was most similar in contrast enhancement in the group with fixed injection at twice body weight. Furthermore, the group with a delay time of 20% had the highest contrast enhancement effect, and the difference in CT attenuation coefficient from the group scanned immediately after injection of the contrast media. Therefore, the appropriate delay time after injection of the contrast agent increased the contrast enhancement of the parenchymal organ. In addition, the weight-based injection protocol with normal saline reduced artifacts around the heart, and the effect of contrast enhancement could be maintained. In conclusion, it is possible to reduce dosage of contrast media through the application of weight-based injection protocols and appropriate latency, and to characterize optimal portal phase imaging on pediatric abdominal CT.

Characterizing three-dimensional mixing process in river confluence using acoustical backscatter as surrogate of suspended sediment (부유사 지표로 초음파산란도를 활용한 합류부 3차원 수체혼합 특성 도출)

  • Son, Geunsoo;Kim, Dongsu;Kwak, Sunghyun;Kim, Young Do;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.167-179
    • /
    • 2021
  • In order to characterize the mixing process of confluence for understanding the impacts of a river on the other river, it has been crucial to analyze the spatial mixing patterns for main streams depending on various inflow conditions of tributaries. However, most conventional studies have mostly relied upon hydraulic or water quality numerical models for understanding mixing pattern analysis of confluences, due to the difficulties to acquire a wide spatial range of in-situ data for characterizing mixing process. In this study, backscatters (or SNR) measured from ADCPs were particularly used to track sediment mixing assuming that it could be a surrogate to estimate the suspended sediment concentration. Raw backscatter data were corrected by considering the beam spreading and absorption by water. Also, an optical Laser diffraction instrument (LISST) was used to verify the method of acoustic backscatter and to collect the particle size distribution of main stream and tributary. In addition, image-based spatial distributions of sediment mixture in the confluence were monitored in various flow conditions by using an unmanned aerial vehicle (UAV), which were compared with the spatial distribution of acoustic backscatter. As results, we found that when acoustic backscatter by ADCPs were well processed, they could be proper indicators to identify the spatial patterns of the three-dimensional mixing process between two rivers. For this study, flow and sediment mixing characteristics were investigated in the confluence between Nakdong and Nam river.

Assessment of Effective Dose by using additional Filters in Dental Radiography: PC-Based Monte Carlo Program Analysis Subjected on Intraoral Radiography (치과 방사선 촬영의 부가 필터 사용에 따른 유효선량 평가: 구내 촬영에 대한 PC-Based Monte Carlo Program 분석)

  • Kwak, Jong Hyeok;Kim, A Yeon;Kim, Gyeong Rip;Cho, Hee Jung;Moon, Sung Jin;Kil, Sang Hyeong;Lee, Jong Kyu
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.491-498
    • /
    • 2021
  • In this study, the effective dose was measured using the PCXMC v2.0 program by examining the conditions used to set the diagnostic reference level for intraoral imaging recommended by the government, and the effect of the Al additive filter was confirmed. In oral imaging, the largest effective dose was calculated from the oral mucosa among 11 organs. The effect of the Al additive filter showed an excellent radiation reduction effect at 2mm rather than 1mm. In the case of children aged 5 years, the overall effective dose was calculated to be high in all 11 organs because they are more sensitive to radiation than adults. And as a result of evaluating the image quality according to the use of an additional filter during intraoral imaging, there was no significant difference in SNR and CNR changes compared to before the additional filter was used. Based on this study, it is thought that additional filter settings can be recommended for intraoral imaging.