• Title/Summary/Keyword: illuminant Spectral power distribution

Search Result 5, Processing Time 0.021 seconds

Estimation of Spectral Radiant Distribution of Illumination and Corresponding Color Reproduction According to Viewing Conditions (광원의 분광 방사 분포의 추정과 관찰조건에 따른 대응적 색재현)

  • 방상택;이철희;곽한봉;유미옥;안석출
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.04a
    • /
    • pp.35-44
    • /
    • 2000
  • Because Image on the CRT change under different illuminants, human is difficult to see original color of object. If what is information of used illuminant on capturing object know, image can be transformed according to viewing condition using the linear matrix method. To know information of used illuminant at an image, the spectral radiance of illuminant can be estimated using the linear model of Maloney and Wandell form an image. And then image can be properly transformed it using color appearance model. In this paper, we predict the spectral radiance of illuminant using spectral power distribution of specular light and using surface spectral reflectance at maximum gray area. and then we perform visual experiments for the corresponding color reproduction according to viewing condition. In results, we ensure that the spectral radiance of illuminant at an image can be well estimated using above algorithms and that human visual system is 70% adapted to the monitor's white point and 30% to ambient light when viewing softcopy images.

Estimation of the Spectral Power Distribution of Illumination for Color Digital Image by Using Achromatic Region and Population (디지털 영상에서 무채색 영역과 모집단을 이용한 조명광원의 분광방사 추정)

  • 곽한봉;서봉우;이철회;하영호;안석출
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 2001
  • In this paper we propose a new method that can be estimation the spectral power distribution of the light source from three-band images. the light source is estimated by dividing the reflected spectral power distribution of the maximum achromatic region(L(λ)) by the corresponding surface reflectance(Ο(λ)). In order to obtain reflected spectral power distribution of the maximum achromatic region from three-bend images, a modified gray world assumption algorithm is adapted. And the maximum surface reflectance is estimated using the principal component analysis method along with achromatic population. The achromatic population is created from a set of given Munsell color chips whose chroma vector is less than threshold. Cumulative contribution ratio of principal components from the first to the third for classified achromatic population was about 99.75%. The reconstruction of illumination spectral power distribution by using achromatic population and three-band digital images captured under various light source was examined, and evaluated by RMSE between the original and reconstructed illumination spectral power distribution. This work was supported by grant No (2000-1-30200-005-3) from the Basic Research Program of the Korea Science & Engineering Foundation.

  • PDF

Estimation of Spectral Distribution of Illumination Using Maximum Achromatic Region (최대 무채색 영역을 이용한 광원의 분광분포 추정)

  • Kim, Hui-Su;Kim, Yun-Tae;Lee, Cheol-Hui;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.392-400
    • /
    • 2001
  • This paper proposes an illuminant estimation algorithm that estimates the spectral power distribution of an incident light source from a single image. The proposed illumination recovery procedure has two phases. First, the surface spectral reflectances are recovered in the maximum achromatic region (MAR) which is the most achromatic and highly bright region of an image after removing partially the effect of illumination using a modified gray world algorithm. Here, the surface reflectances of MAR are estimated using the principal component analysis method along with a set of given 1269 Munsell samples. Second, the Population of reflected lights is determined with 1269 Munsell samples and a set of illuminations then the spectral distribution of re(looted lights of MAR is selected from the spectral database. That is, color differences are compared between the reflected lights of the MAR and the spectral database, which is the set of reflected lights built by the given set of Munsell samples and illuminants. Then the closest colors from the spectral database are selected. Finally, the illuminant of an image can be calculated dividing the average spectral distributions of reflected lights of MAR by the average surface reflectances of the MAR. In order to evaluate the proposed algorithm, experiments with artificial scenes, which are exposed to chromatic illuminants, were performed and the spectral distribution of estimated illumination and color difference are compared with results of the conventional method.

  • PDF

Production of Low-illuminated Image Sets based on Spectral Data for Color Constancy Research (색 항등성을 위한 분광 데이터 기반의 저조도 영상 집합 생성)

  • Kim, Dal-Hyoun;Lee, Woo-Ram;Hwang, Dong-Guk;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3207-3213
    • /
    • 2011
  • Most methods of color constancy, which is the ability to determine the object color regardless of the scene illuminant, have failed to meet our expectation of their performance especially about low-illuminated scenes. Some methods with high performance need to be developed, but we must, above all else, obtain experimental images for analyzing the required circumstances or evaluating the methods. Therefore, the paper produces new sets of images so that they can be used in the development of color constancy methods suitable for low-illuminated scenes. These sets are composed of two parts: one part of images which are synthesized with spectral power distribution(SPD) of illuminants, spectral reflectance curve of reflectances, and sensor response functions of camera; the other part of images where the intensity of each image is adjusted at the uniform rate. In an experiment, the use of the sets takes an advantage that its result images are analyzed and evaluated quantitatively as their ground truth data are known in advance.

Perceived color shift of ceramics according to the change of illuminating light with spectroradiometer

  • Cha, Hyun-Suk;Yu, Bin;Lee, Yong-Keun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.262-269
    • /
    • 2013
  • PURPOSE. Perceived color of ceramics changes by the spectral power distribution of ambient light. This study aimed to quantify the amount of shifts in color and color coordinates of clinically simulated seven all-ceramics due to the switch of three ambient light sources using a human vision simulating spectroradiometer. MATERIALS AND METHODS. CIE color coordinates, such as $L^*$, $a^*$ and $b^*$, of ceramic specimens were measured under three light sources, which simulate the CIE standard illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp). Shifts in color and color coordinate by the switch of lights were determined. Influence of the switched light (D65 to A, or D65 to F9), shade of veneer ceramics (A2 or A3), and brand of ceramics on the shifts was analyzed by a three-way ANOVA. RESULTS. Shifts in color and color coordinates were influenced by three factors (P<.05). Color shifts by the switch to A were in the range of 5.9 to 7.7 ${\Delta}E{^*}_{ab}$ units, and those by the switch to F9 were 7.7 to 10.2; all of which were unacceptable (${\Delta}E{^*}_{ab}$ > 5.5). When switched to A, CIE $a^*$ increased (${\Delta}a^*$: 5.6 to 7.6), however, CIE $b^*$ increased (${\Delta}b^*$: 4.9 to 7.8) when switched to F9. CONCLUSION. Clinically simulated ceramics demonstrated clinically unacceptable color shifts according to the switches in ambient lights based on spectroradiometric readings. Therefore, shade matching and compatibility evaluation should be performed considering ambient lighting conditions and should be done under most relevant lighting condition.