• Title/Summary/Keyword: illite clay

Search Result 193, Processing Time 0.026 seconds

Distribution of Clay Minerals in Soils on the Northern Drainage Basin of the Nakdong River (낙동강 북부 배수유역의 토양 점토광물 분포)

  • Lee, Bong-Ho;Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 2008
  • Semiquantitative mineralogical analysis of clays in soils was performed to understand the distribution of clay minerals in relation to bedrock lithology on the northern basin of the Nakdong River. The soils developed on the granitic bedrocks have high contents of kaolinite and smectite. mite was the major clay mineral in the soils from sedimentary bedrocks, with minor kaolinite, smectite, and intergrade (interstratified chlorite-smectite or hydroxy-interlayed vermiculite) clay minerals. Illite and kaolinite contents of the soils from metamorphic and volcanic bedrocks fall between those of the soils from the granitic bedrocks and those of the soils from the sedimentary bedrocks. The clay mineralogy of the soils depends on the compositions of bedrock minerals and their susceptibility to chemical weathering. The weathering of plagioclase resulted in the high kaolinite content of the soils derived from granitic bedrocks, while the soils derived from sedimentary bedrocks are abundant in residual illite.

Landslide Susceptibility Analysis : SVM Application of Spatial Databases Considering Clay Mineral Index Values Extracted from an ASTER Satellite Image (산사태 취약성 분석: ASTER 위성영상을 이용한 점토광물인자 추출 및 공간데이터베이스의 SVM 통계기법 적용)

  • Nam, Koung-Hoon;Lee, Moung-Jin;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • This study evaluates landslide susceptibility using statistical analysis by SVM (support vector machine) and the illite index of clay minerals extracted from ASTER(advanced spaceborne thermal emission and reflection radiometer) imagery which can be use to create mineralogical mapping. Landslide locations in the study area were identified from aerial photographs and field surveys. A GIS spatial database was compiled containing topographic maps (slope, aspect, curvature, distance to stream, and distance to road), maps of soil properties (thickness, material, topography, and drainage), maps of timber properties (diameter, age, and density), and an ASTER satellite imagery (illite index). The landslide susceptibility map was constructed through factor correlation using SVM to analyze the spatial database. Comparison of area under the curve values showed that using the illite index model provided landslide susceptibility maps that were 76.46% accurate, which compared favorably with 74.09% accuracy achieved without them.

Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period (추가령단층대 주요 단층의 백악기 이후 재활동 연대)

  • Chung, Donghoon;Song, Yungoo;Park, Changyun;Kang, Il-Mo;Choi, Sung-Ja;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • Recently developed illite-age-analysis (IAA) approach has been applied to determine the multiple events for the Singal and Wangsukcheon faults in the Chugaryeong fault belt, Korea. Fault reactivated events during Late Cretaceous to Paleogene events($69.2{\pm}0.3$ Ma and $27.2{\pm}0.5$ Ma) for the Singal fault and of $75.4{\pm}0.8$ Ma for the Wangsukcheon fault were determined by combined approach of the optimized illite-polytype quantification and the K-Ar age-dating of clay fractions separated from the fault clays. These absolute geochronological determinations of the multiple tectonic events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since Late Cretaceous.

Implication of Soil Minerals on Formation of Impermeable Layers in Saprolite Surface-Piled Upland Fields at Highland

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granite-gneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and feldspar, respectively.

Controls on Diagenetic Mineralogy of Sandstones and Mudrocks from the Lower Hayang Group (Cretaceous) in the Daegu Area, Korea (대구 부근 하부 하양층군(백악기) 사암과 이암의 속성 광물과 속성 작용의 규제 요인)

  • Shin, Young-Sik;Choo, Chang-Oh;Lee, Yoon-Jong;Lee, Yong-Tae;Koh, In-Seok
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.575-586
    • /
    • 2002
  • Authigenic minerals found in sandstones and mudrocks of the Lower Hayang Group (Cretaceous) in the central part of the Kyungsang Basin are carbonate minerals (calcite, dolomite), clay minerals (illite, chlorite, C/S, I/S and kaolinite), albite, quartz and hematite. Characteristic diagenetic mineral assemblages are as follows: albite-chlorite (including C/S)-hematite in the Chilgog Formation, albite-illite-calcite in the Silla Conglomerate, illite-chlorite-hematite in the Haman Formation and albite-chlorite-dolomite in the Panyawol Formation, respectively. Among clay minerals reflecting the physical and chemical change of the diagenetic process, illite, the dominant clay mineral, occurs in every formation in the study area. Chlorite occurs mainly in green or gray sandstones and mudrocks, or in sandstones and mudrocks of the Chilogok Formation which contains a high content of volcanic materials. Based on the mineral assemblage, diagenetic minerals are strongly related with source rocks. Judging from the illite crystallinity, diagenesis of sandstones and mudrocks in the study area reached the late diagenetic stage or low grade metamorphisim. The diagenetic process was much influenced by intrusion of the Bulguksa granite, content of organic materials, grain size, and depositional environment rather than burial depth.

Analysis of Landslide locations using Spectral Reflectance of Clay Mineral and ASTER Satellite Image (점토광물의 분광반사율 및 ASTER 위성영상을 이용한 산사태 발생지역 분석)

  • Nam, Koung-Hoon;Lee, Hong-Jin;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • The purpose of this study is to analyze the key factors that contribute to landslide causes through swelling clay minerals and terrain analysis in landslide sites taken place of in Yongin city, Gyeonggi-do, 2011. The study was conducted based on field survey by XRD (X-ray Diffraction), XRF (X-ray fluorescence), spectroscopic analysis on soil samples obtained from landslide sites and ASTER satellite image. Illite shows absorption features; $Fe^{2+}$ and $Fe^{3+}$ at 0.9 and $1.0{\mu}m$, broad water absorption features near 1.4 and $1.9{\mu}m$, and additional Al-hydroxyl features at 2.2, 2.3 and $2.4{\mu}m$, respectively. These absorption features are consistent with the bands 5, 6, and 7 of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite image. Illite image was extracted using band math of $SWIR_{Illite}$. From these results, we confirmed the applicability of ASTER satellite image using identification of swelling clay minerals to landslide study.

Application of an XRD-Pattern Calculation Method to Quantitative Analysis of Clay Minerals (X-선 회절도형 계산방법을 이용한 점토광물의 정량분석)

  • Ahn, Jung-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • An XRD quantitative analytical method using calculated XRD patterns was discussed in this study, Deep-seabed sediments commonly contain smectite, illite, chlorite, and kaolinite, and XRD pattern of each clay mineral of appropriate chemical composition was simulated by using an XRD pattern calculation method. Theoretical peak intensities of specific reflections of four clay minerals (the 001 reflections of smectite and illite, the 004 reflection of chlorite, and the 002 reflection of kaolinite) were measured from calculated patterns, and MIF(mineral intensity factor)value of each phase was determined from the intensities of calculated patterns. The peak intensities obtaine from experimental XRD patterns of sediments were corrected using the MIF values so that the calibrated intensity values for the specimens are linearly proportional to the weight fraction of each phase, which is normalized to 100 wt%. The MIF method can provide accurate quantitaive results without the necessity of correcting the factors by the mass absorption coefficient of each phase. This method excludes the necessity of standard specimens having compositions that are similar to those of clay minerals in the sediment samples. Therefore, quantitaive analysis using XRD calculation method can be utilized for the specimens, for which the standard specimens are very difficult or impossible to obtain. this quantitative method can provide rapid, routine analysis results for a large number of samples which occur in similar geological environments.

  • PDF

Estimation of Sediment Provenance Using Clay Mineral Composition in the Central Basin of the Ross Sea Continental Margin, Antarctica (남극 로스해 대륙주변부 중앙분지의 점토광물 조성을 통한 기원 추적)

  • Ha, Sangbeom;Khim, Boo-Keun;Colizza, Ester;Giglio, Federico;Koo, Hyojin;Cho, Hyen Goo
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.265-274
    • /
    • 2019
  • To trace the provenance of fine-grained sediments in response to the growth and retreat of glaciers (i.e., Ross Ice Sheet) that affects the depositional process, various kinds of analyses including magnetic susceptibility, granulometry, and clay mineral composition with AMS 14C age dating were carried out using a gravity core KI-13-GC2 obtained from the Central Basin of the Ross Sea continental margin. The sediments mostly consist of silty mud to sand with ice-rafted debris, the sediment colors alternate repeatedly between light brown and gray, and the sedimentary structures are almost bioturbated with some faint laminations. Among the fine-grained clay mineral compositions, illite is highest (59.1-76.2%), followed by chlorite (12.4-21.4%), kaolinite (4.1-11.6%), and smectite (1.2-22.6%). Illite and chlorite originated from the Transantarctic mountains (metamorphic rocks and granitic rocks) situated to the south of the Ross Sea. Kaolinite might be supplied from the sedimentary rocks of Antarctic continent underneath the ice sheet. The provenance of smectite was considered as McMurdo volcanic group around the Victoria Land in the western part of the Ross Sea. Chlorite content was higher and smectite content was lower during the glacial periods, although illite and kaolinite contents are almost consistent between the glacial and interglacial periods. The glacial increase of chlorite content may be due to more supply of the reworked continental shelf sediments deposited during the interglacial periods to the Central Basin. On the contrary, the glacial decrease of smectite content may be attributed to less transport from the McMurdo volcanic group to the Central Basin due to the advanced ice sheet. Although the source areas of the clay minerals in the Central Basin have not changed significantly between the interglacial and glacial periods, the transport pathways and delivery mechanism of the clay minerals were different between the glacial and interglacial periods in response to the growth and retreat of Ross Ice Sheet in the Ross Sea.

A Comparative Study on Absolute and Relative Clay Mineral Composition of the Surface Sediments around the Jeju Island (제주도 주변해역 표층퇴적물의 점토광물 절대함량 및 상대함량 비교연구)

  • Moon, Dong-Hyeok;Cho, Hyen-Goo;Yi, Hi-Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2010
  • The absolute clay mineral compositions and regional distribution of the 131 bulk marine surface sediments around the Jeju Island was compared to their relative compositions and distribution using quantitative X-ray diffraction analysis. Average absolute clay mineral composition is illite 15.3% (0.5~40.5%), chlorite 2.6% (0~7.9%), and kaolinite 1% (0~5.6%). Total contents of the clay minerals are very high in the South Sea of Korea, northwestern part and southern offshore of Jeju Island. The average relative composition is illite 70.9% (16.7~89%), chlorite 21.5% (8.4~68.5%), and kaolinite 7.6% (0~29.3%). Relative illite contents are high in the northwestern and southeastern part of study area, and southern part of Jeju Island. Chlorite contents are high in the eastern part of study area and western part of Jeju Island. Kaolinite contents are high in the western and southern part of Jeju Island, and southern offshore of Jeju Isand. Absolute Distribution patterns are very similar to those of fine-grained (from clay to silt) sediment, whereas relative distribution patterns do not show any relationship with those of fine-grained sediment.

Mineralogy and Cheimical Composition of Soils with Relation to the Types of Parent Rocks in the Northern Pusan Area (부산 북부지역의 모암유형에 따른 토양의 구성광물 및 화학성분)

  • 김의선;황진연;김진섭;함세영;김재곤
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.58-72
    • /
    • 2001
  • The Cretaceous granite, andesite and sedimentary rocks are widely distributed in the northern Pusan area. The present study investigates mineralogical and geochemical charateristics of residual and cultivated soils derived from these rocks. The soils of granite area contain a large amount of quartz relative to clay minerals, whereas the soils of the andesite area contain more clay minerals than quartz. Clay minerals consist mainly of kaolin minerals illite hydroxy interlayered vermiculite interstratified mica/vermiculite and chlorite. Kaolin minerals are abundant in paddy soils while illite is abundant in less weathered soils. Si and K are major elements in the soils of granite area while Fe and Al in the soils of andesite area. In all the soils Ca, Mg and Na were generally depleted in comparison to those in parent rocks. Analysis data of trace element show that the enrichment pattern in soils depends on parent rock type with high oncentration of some elements over 100 ppm: Ba and Rb in granite area Zn, Bn, and V in andesite area, and Ba and V in sedimentary rock. In granite area, Rb and Th were greatly enriched in soil than in parent rocks. However, Cr, Ni and Sr commonly decrease, whereas Pb increases in all the soils. Exchangeable cation capacity(CEC) is relatively high in the soils of andesite are including abundant clay minerals. Collective evidences prove that the mineralogical and chemical compositions of soils are strongly dependent on the parent rock type. The mineralogy and chemistry of long cultivated soils are not significantly different from those of residual soils.

  • PDF