Proceedings of the Korean Statistical Society Conference
/
2001.11a
/
pp.191-194
/
2001
In general, the imputation problems which are caused from survey nonresponse have been studied for being based on ignorable cases. However the model based approach can be applied to survey with nonresponse suspected of being nonignorable. Here in this study, we will make the nonresponse for nonignorable into ignorable cell using adjustment cell approach, then we can applied the ignorable nonresponse method. For data sets of each nonresponse cells are simulated from normal distribution.
We consider the problem of estimating binomial proportions in the presence of nonignorable nonresponse using the Bayesian selection approach. Inference is sampling based and Markov chain Monte Carlo (MCMC) methods are used to perform the computations. We apply our method to study doctor visits data from the Korean National Family Income and Expenditure Survey (NFIES). The ignorable and nonignorable models are compared to Stasny's method (1991) by measuring the variability from the Metropolis-Hastings (MH) sampler. The results show that both models work very well.
Communications for Statistical Applications and Methods
/
v.11
no.2
/
pp.399-411
/
2004
A common method of handling nonresponse in sample survey is to delete the cases, which may result in a substantial loss of cases. Thus in certain situation, it is of interest to create a complete set of sample values. In this case, a popular approach is to impute the missing values in the sample by the mean or the median of responders. The difficulty with this method which just replaces each missing value with a single imputed value is that inferences based on the completed dataset underestimate the precision of the inferential procedure. Various suggestions have been made to overcome the difficulty but they might not be appropriate for public-use files where the user has only limited information for about the reasons for nonresponse. In this note, a multiple imputation method is considered to create complete dataset which might be used for all possible inferential procedures without misleading or underestimating the precision.
We consider the missing covariates problem in generalized estimating equations(GEE) model. If the covariate is partially missing, GEE can not be calculated. In this paper, we study the performance of 7 imputation methods to handle missing covariates in GEE models, and the properties of GEE estimators are investigated after missing covariates are imputed for ordinal data of repeated measurements. The 7 imputation methods include i) Naive Deletion ii) Sample Average Imputation iii) Row Average Imputation iv) Cross-wave Regression Imputation v) Carry-over Imputation vi) Bayesian Bootstrap vii) Approximate Bayesian Bootstrap. A Monte-Carlo simulation is used to compare the performance of these methods. For the missing mechanism generating the missing data, we assume ignorable nonresponse. Furthermore, we generate missing covariates with or without considering wave nonresp onse patterns.
The National Health Interview Survey (NHIS) is one of the surveys used to assess the health status of the US population. One indicator of the nation's health is the total number of doctor visits made by the household members in the past year, There is a substantial nonresponse among the sampled households, and the main issue we address here is that the nonrespones mechanism should not be ignored because respondents and nonrespondents differ. It is standard practice to summarize the number of doctor visits by the binary variable of no doctor visit versus at least one doctor visit by a household for each of the fifty states and the District of Columbia. We consider a nonignorable nonresponse model that expresses uncertainty about ignorability through the ratio of odds of a household doctor visit among respondents to the odds of doctor visit among all households. This is a hierarchical model in which a nonignorable nonresponse model is centered on an ignorable nonresponse model. Another feature of this model is that it permits us to "borrow strength" across states as in small area estimation; this helps because some of the parameters are weakly identified. However, for simplicity we assume that the hyperparameters are fixed but unknown, and these hyperparameters are estimated by the EM algorithm; thereby making our method Bayes empirical Bayes. Our main result is that for some of the states the nonresponse mechanism can be considered non-ignorable, and that 95% credible intervals of the probability of a household doctor visit and the probability that a household responds shed important light on the NHIS.
Objectives : A common problem with analyzing survey data involves incomplete data with either a nonresponse or missing data. The mail questionnaire survey conducted for collecting lifestyle variables on the members of the Korean Elderly Phamacoepidemiologic Cohort(KEPEC) in 1996 contains some nonresponse or missing data. The proper statistical method was applied to evaluate the missing pattern of a specific KEPEC data, which had no missing data in the independent variable and missing data in the response variable, BMI. Methods : The number of study subjects was 8,689 elderly people. Initially, the BMI and significant variables that influenced the BMI were categorized. After fitting the log-linear model, the probabilities of the people on each category were estimated. The EM algorithm was implemented using a log-linear model to determine the missing mechanism causing the nonresponse. Results : Age, smoking status, and a preference of spicy hot food were chosen as variables that influenced the BMI. As a result of fitting the nonignorable and ignorable nonresponse log-linear model considering these variables, the difference in the deviance in these two models was 0.0034(df=1). Conclusion : There is a lot of risk if an inference regarding the variables and large samples is made without considering the pattern of missing data. On the basis of these results, the missing data occurring in the BMI is the ignorable nonresponse. Therefore, when analyzing the BMI in KEPEC data, the inference can be made about the data without considering the missing data.
Many studies have been conducted to properly handle nonresponse. Recently, many nonresponse imputation methods have been developed and practically used. Most imputation methods assume MCAR (missing completely at random) or MAR (missing at random). On the contrary, there are relatively few studies on imputation under the assumption of MNAR (missing not at random) or NN (nonignorable nonresponse) that are affected by the study variable. The MNAR causes Bias and reduces the accuracy of imputation whenever response probability is not properly estimated. Lee and Shin (2022) proposed a nonresponse imputation method that can be applied to nonignorable nonresponse assuming homoscedasticity in super-population model. In this paper we propose an generalized version of the imputation method proposed by Lee and Shin (2022) to improve the accuracy of estimation by removing the Bias caused by MNAR under heteroscedasticity. In addition, the superiority of the proposed method is confirmed through simulation studies.
The nonresponse in sample survey causes a problem when it comes time to analyze dataset in public-use files where the user has only complete-data methods available and has limited information about the reasons for nonresponse. Recently imputation for nonresponse is becoming a standard approach for handling nonresponse and various imputation methods have been devised . However, most imputation methods concern with continuous traits while many interesting features are measured by binary or ordered categorical scales in sample survey. In this note. an imputation method for ignorable nonresponse in binary or ordered categorical traits is considered.
Proceedings of the Korean Statistical Society Conference
/
2000.11a
/
pp.51-56
/
2000
When the standard inference is to be used with complete data and nonresponse is ignorable, then multiple imputations should be created as repetitions under a Bayesian normal model. Many Bayesian models besides the normal, however, approximately yield the standard inference with complete data and thus many such models can be used to create proper imputations. We consider the Bayesian bootstrap (BB) application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.