• Title/Summary/Keyword: ignition test

Search Result 467, Processing Time 0.027 seconds

Study on Ignition Characteristics Relating to Igniter Penetration Depth in a Model Sector Combustor (모델 섹터 연소기의 점화기 깊이에 따른 점화특성 연구)

  • Jin, Yu-In;Ryu, Gyong Won;Min, Seong Ki;Kim, Hong Jip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.2
    • /
    • pp.36-41
    • /
    • 2017
  • Aero gas turbine engines must demonstrate their ability to be ignited on ground conditions or relighted in flight. The electric spark ignition is usually used in current aero gas turbine engines. Experiments on ignition characteristics relating to spark igniter penetration depth under atmospheric pressure and temperature conditions were conducted on the model combustor which is scaled in 1/18. Exciter was operated during 2 seconds, and successful ignition phenomena were confirmed by the pressure rising sharply in combustor. In addition, instantaneous ignition images were captured by a high-speed camera. It showed kernel propagation and successful ignition events in the sector model combustor. Ignition test results showed that ignition limit with increase in penetration depth of the igniter plug was wider. When the penetration depth of the igniter plug increased under the same fuel injection pressure condition, successful ignition events were obtained in higher differential pressure conditions between inlet and outlet of the combustor. The results demonstrate that the ratio of the combustible mixture, which is exposed to the high temperature environment around the igniter plug tip, increases. Thereby affect the combustor ignition performance.

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

Study on the Correlation between Thermal Characteristics and Heat Accumulation in the Coal Pile (석탄의 열적 특성과 석탄 내부의 승온 특성과의 상관관계 연구)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 2010
  • Spontaneous ignition tests of five different coals with non-iso-thermal and iso-thermal test method based on the standard test procedure of NF T20-036 were carried. These five coals included the 2 low rank coals and 3 bituminous coals. Test results showed that the ignition temperatures of all coals at the iso-thermal conditions were higher than that of non-isothermal condition, and those of low rank SM and BR coal in both nonisothermal and isothermal conditions were lower than bituminous AN and CN coals. The chemical species of coals such as oxygen and hematite also plays an important role in enhancing the ignition rate that the ignition temperature of SM coal was lowered. The heat accumulation tendency of five coals inside outdoor stack pile was monitored with emphasis on the change in the temperature of the coal depth in stack pile. In case of low rank BR coal, its temperature inside coal stack pile due to the rate of high heat accumulation and oxidation was $59^{\circ}C$ compared to $51^{\circ}C$ for other SW bituminous coal. And the heat accumulation rate inside coal stack piles was increased with increased the Cp value which it was defined as the specific heat of coal at constant pressure, whereas other factors such as thermal diffusivity and conductivity of coal relatively had less effect on heat accumulation.

The study on Coal Spontaneous Ignition Prevention using Safety Materials of Food and Cosmetics (식품과 화장품의 안전 소재를 이용한 석탄 자연발화 억제에 대한 연구)

  • Jun, Soo-Man;Kim, Young-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.368-376
    • /
    • 2022
  • Spontaneous ignition occurs in industrial sites or anywhere in our lives, and is a phenomenon in which a substance ignites itself without an ignition source in the atmosphere. As the rate of chemical reaction increases, the heat generated increases, and the risk of spontaneous ignition increases. In this study, safe raw materials used for food and cosmetics were mixed to prepare coal spontaneous ignition prevention agents specifically among various spontaneous ignition phenomena. The effect of suppressing spontaneous combustion of coal was confirmed through lab and field tests with low-calorie, low-grade coal from Indonesia. As a result of the outdoor field test, the ignition prevention agent manufactured in this study compared with the control group(Fire after 90 days) showed excellent ignition inhibitors for more than 120 days. In addition, CO concentration control was confirmed by comparing the concentration of carbon monoxide for 50 days at the indoor coal yard. It was confirmed that the results were better than the comparative group coal and the existing anti-firing method. In addition, the possibility of coal fire prevention agents for indoor coal farms will be applied from 2024 was confirmed by studying the environment and safety of workers' working environments through official test such as soil and water quality test, MSDS of coal fire prevention agents in consideration of working workers, water quality, and eye irritation tests.

Design and Output Characteristic Analysis of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 설계 및 출력 특성 해석)

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun;Oh, Seok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1166-1173
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD. The pressure built in the free volume of 10-cc closed bomb and the opening time of the ignition gas outlet are calculated using one dimensional gas dynamic model which is composed of the ideal gas equation and mass-energy conservation equation. Comparing the test result with model prediction, it is realized that the pressure built in the free volume of closed bomb due to the firing of EMISD, has the efficiency ratio of about 34%.

Effects of Additives and Ignition Support Material on HTPB Fuel Grains for Solid Fuel Ramjet (고체연료 램젯용 HTPB 연료그레인에 첨가제와 점화보조제가 미치는 영향)

  • Jung, Woosuk;Baek, Seungkwan;Jung, YeonSoo;Kwon, Taesoo;Park, Juhyun;Kim, Incheol;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.957-967
    • /
    • 2017
  • Firing test of the fuel grain for solid fuel ramjet with additives and ignition support material was conducted. Fuel grain consist of HTPB mixed with AP particle 15 wt.%, Boron particle 5 wt.%. To cause the short ignition delay, ignition support consist of $NC/BKNO_3$ and composite propellant was coated to the fuel grain. An oxidant gas having a controlled temperature, pressure and oxygen composition close to the air condition in the ramjet combustor was supplied using the Ethanol blended $H_2O_2$ gas generator. Gas was set to flow at a mass flow rate of 150 g/s and mass flux of $200kg/m^2s$ in the grain port. Through the test, ignition support operated well and ignition delay of 0.5. During the test, stable chamber pressure with 8 bar and high combustion efficiency of 0.86 was confirmed.

  • PDF

Development of Ignition System for MEMS Solid Propellant Thruster (MEMS 고체 추진제 추력기의 점화 시스템 개발)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.91-94
    • /
    • 2007
  • The fabrication and firing test of the ignition system for a micro solid propellant thruster are described in the present paper. Pt igniter coil was patterned on the glass membrane that was fabricated by the wet etching process. The thickness of Pt layer was $2000{\AA}$ and the width of igniter pattern was $40{\mu}m$. The thickness and diameter of glass membrane were $15{\mu}m$ and 1 mm, respectively. Ignition test was performed. Successful ignition of HTPB/AP propellant was obtained with an ignition delay of 1.6 s at an input voltage of 12 V. The ignition energy was estimated to be 1.4 J.

  • PDF

A study on the engine performance in a multiple spark ignition engine (다회수 스파크 점화기관의 기관성능에 관한 연구)

  • 이성열;한병호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.66-74
    • /
    • 1988
  • The ignition quality of ignition system is influenced by spark energy, discharge pattern of spark energy and spark duration. In this paper, the characteristics of multiple spark ignition system have been investigated for various number of spark and spark interval. The results, which were compared with those obtained with a standard single spark ignition, show that engine output is increased, and lean misfire limit is extended with the multiple spark ignition system. The most effective number of spark at the most effective spark interval that are determined by engine performance test, were 6 times spark at 0.02ms spark interval. For the above condition of spark, engine torque was increased about 20% comparing with conventional ignition system and lean misfire limit was extended to air-fuel ratio 22.5:1. This study researched the rate of heat release and quantity of heat release influenced by a condition of spark on the mass burned in order to investigate the relationship between the rate of mass burned and number of spark times.

  • PDF

Ignition Studies Of Igniter using Hydrogen Peroxide And Kerosene (Catalyst Ignition) (과산화수소/케로신(촉매점화) 점화기의 점화특성에 관한 연구)

  • Kim, Ki-Woo;Kim, Tae-Wan;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.57-60
    • /
    • 2009
  • Exothermic and ignition characteristic of igniter is very important factor in engine performance. Since the igniter performance is effected by Hydrogen Peroxide decomposition rate, we have to test the preliminary catalyst performance test. In this report, after making igniter using hydrogen peroxide/kerosene, a thermal characteristic were examined by comparing hydrogen peroxide mass and catalyst mass. And then we study ignition characteristic of the affects of O/F ratio using the previous data.

  • PDF

A STUDY ON OXIDATION TREATMENT OF URANIUM METAL CHIP UNDER CONTROLLING ATMOSPHERE FOR SAFE STORAGE

  • Kim, Chang-Kyu;Ji, Chul-Goo;Bae, Sang-Oh;Woo, Yoon-Myeoung;Kim, Jong-Goo;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.391-398
    • /
    • 2011
  • The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than $300^{\circ}C$ and tested for oxidation at various temperatures, which are $300^{\circ}C$, $400^{\circ}C$, and $500^{\circ}C$. When the oxidation temperature was $400^{\circ}C$, the oxidized sample for 7 hours showed a temperature rise of $60^{\circ}C$ in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of $7^{\circ}C$ representing a stable behavior in the self-ignition test. When the temperature was $500^{\circ}C$, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported.