• Title/Summary/Keyword: ignition test

Search Result 467, Processing Time 0.023 seconds

Ignition resistance of CaO added Mg-3Al, Mg-6Al and Mg-9Al Eco-Mg alloys (CaO가 첨가된 Mg-3Al, Mg-6Al 및 Mg-9Al Eco-Mg 합금의 발화 저항성 평가)

  • Lee, Jin-Kyu;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.60-65
    • /
    • 2011
  • Molten magnesium alloys and magnesium products are easily oxidized and burned when they are exposed to high temperature for manufacturing process and by accident. In order to solve these problems, CaO addition in magnesium alloys has been developed. The ignition resistance of CaO added Mg-3Al, Mg-6Al, and Mg-9Al Eco-Mg alloys were investigated in comparison with those of magnesium alloys without CaO. The ignition resistance was examined by three methods : DTA, furnace chip ignition test, and torch ignition test. DTA was carried out for obtaining quantitative ignition temperature data with respect to specimen geometry and test environment; the furnace ignition test for burr and chip ignition temperature data; and the torch test for ignition temperature data for manufactured products. The ignition resistance of magnesium alloys under all conditions greatly increased by CaO addition.

Evaluation of Ignition Performance of Green Hypergolic Propellant (친환경 접촉점화 추진제 점화 성능 평가)

  • Sunjin Kim;Minkyu Shin;Jeongyeol Cha;youngsung Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Hypergolic propellants, which can ignite themselves without an ignition source, are difficult to handle due to their corrosiveness and toxicity. Therefore, it is necessary to develop green hypergolic propellants with little or no toxicity. In this study, basic research on green hypergolic ignition propellants was conducted. With 95% hydrogen peroxide as an oxidizer and CNU_HGFv1 as a fuel, ignition and combustion characteristics of propellants were evaluated through a drop test, an ignition test, and a combustion test. As a result of the drop test, the ignition delay time was 9.7 ms. It was 27 ms in the ignition test, which was fast enough to be used as a propellant. As a result of the combustion test, a combustion efficiency of 95.4~98.1% was achieved at about 11.7 bar. It was confirmed that fast and stable combustion was possible without hard start or combustion instability.

Cold Flow and Ignition Tests for a 75-tonf Kerosene-Cooled Liquid Rocket Engine Thrust Chamber (75톤급 액체로켓엔진 케로신 냉각 연소실 수류시험 및 점화시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.25-28
    • /
    • 2010
  • The Cold flow and ignition tests have been performed for a technology demonstration model of 75-tonf liquid rocket engine thrust chamber which was designed and manufactured on the basis of the previous development experience of a 30-tonf liquid rocket engine thrust chamber. The hydrodynamic characteristics of the facility supply pipelines and the filling time of the cooling kerosene were obtained through the cold flow tests. The ignition cyclogram was determinded using the results and the ignition test was successfully carried out. The acquired data and test technique of present ignition test will be used in hot firing tests.

  • PDF

A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas (저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • This paper describes the minimum ignition limits for propane-air 5.25 Vol.% mixture gases in low voltage inductive circiuts. The improved effects on the ignition limit are studied by parallel safety components(resistors) for propane-air 5.25 Vol.% mixture gas in low voltage inductive circuits. The experimental devices used in this test are the IEC type spark ignition test apparatus. The minimum ignition limits are controlled by the values of current in inductive circuit. Energy supplied from electric source is first accumulated at the inductance, it's extra energy is working as ignition source of the explosive gas. The improved effects on the ignition limit are respectively obtained as the maximum rising rate of 330% by composing parallel circuits between inductance and resistor as compared with disconnecting inductance with the safety components. The more values of inductance increase the higher improved effects of ignition limit rise. The less values of resistor the higher improved effects of ignition limit rise. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof machines which are applied equipment and detectors used in dangerous areas but also for datum for its equipment tests.

Cold Flow and Ignition Tests for Technology Demonstration Model of 75-Tonf Thrust Chamber (75톤급 연소기 기술검증 시제 수류시험 및 점화시험)

  • Kim, Mun-Ki;Han, Yeoung-Min;Kim, Jong-Gyu;Ahn, Kyu-Bok;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • Cold flow and ignition tests were performed for a technology demonstration model of a 75-tonf thrust chamber which is a candidate liquid rocket engine for a next Korea Space Launch Vehicle. The test facility was modified to support the new concepts of the thrust chamber such as ignition system, film cooling and LOx leading supply. The hydrodynamic characteristics of the supply pipelines, thrust chamber and igniter as well as the filling time of the propellants were obtained through the cold flow tests on the LOx and kerosene and the ignition cyclogram was determined using the results. The ignition test was successfully accomplished according to the cyclogram and therefore, a basic information was obtained for further hot firing tests.

  • PDF

Full Rig Test and High Altitude Ignition Test of Micro Turbojet Engine Combustor (초소형 터보제트엔진 연소기의 리그시험 및 고고도 점화시험)

  • Lee, Dong-Hun;Kim, Hyung-Mo;Park, Poo-Min;You, Gyung-Won;Paeng, Ki-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.373-376
    • /
    • 2009
  • A full rig combustor test and altitude ignition test were carried out for radial-annular combustor of micro turbojet engine. 11.2% total pressure loss and 99.85% of combustion efficiency were measured at design point of engine under sea level standard condition and $2{\sim}6$ of air excess ratio for ignition envelope was achieved on engine starting regime. Finally, A 30,000 ft high altitude ignition test was also performed and finally we found out that the developed radial-annular combustor is appropriate to micro turbojet engine.

  • PDF

Re-ignition System using Vacuum Triggered Gap-switch for Synthetic Breaking Test

  • Park Seung-Jae;Suh Yoon-Taek;Kim Dae-Won;Kim Maeng-Hyun;Song Won-Pyo;Koh Hee-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.145-151
    • /
    • 2005
  • The synthetic breaking test method was developed to evaluate the breaking performance of ultra high-voltage circuit breaker and made up of two independent circuits; current source circuit and voltage source circuit. In application of this test method, it is necessary to extend the arc of the test breaker. So, the new re-ignition system using VTGS (Vacuum Triggered Gap-Switch) was constructed to improve the efficiency and reliability of this test. In this re-ignition system, VTGS operates in high vacuum state of $5{\time}10^{17}$torr and control system consists of the triggering device and the air M-G (Motor-Generator). This re-ignition system showed the operating characteristics, such as delay time ($t_d$) and jitter time ($t_j$ not exceeding 5us and 1us respectively, and had the operating voltage of $25\~150kVdc$ at the gap distance of 24mm.

Development of Electro-Mechanical Ignition Safety Device (전기-기계식 점화안전장치 개발)

  • Jang, Seung-Gyo;Kang, Ho-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.332-335
    • /
    • 2011
  • Electro-Mechanical Ignition Safety Device(EMISD) for solid rocket motor is designed and manufactured. The EMISD utilizes a true rotary solenoid for arming mechanism and an electric squib(initiator) for generating ignition energy. In order to prove the ignition capability of the EMISD, 10-cc Closed Bomb Test(CBT) is performed, which measures the pressure built by high temperature and high pressure gas generated by operating EMISD.

  • PDF

Development of Pyrogen Igniter for Kick Motor

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Cho, In-Hyun;Kim, Yong-Woon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.301-306
    • /
    • 2008
  • A pyrogen igniter was designed to satisfy the required condition of kick motor system for the space launch vehicle. We analyzed the ignition characteristics and performed the combustion tests to verify the internal ballistic performance. In the design process, the arc-image test was carried out to find the sufficient heat flux as varying the initial pressure from 10 to 700kPa. The analysis indicated that the initial pressure condition would delay ignition time within a range from 100 to 500ms. The combustion test with an inert chamber was also performed to understand the ignition characteristics with the variation of the initial pressure of free chamber volume. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test. The result of the ground tests showed that the ignition delay time was within the design range at the atmospheric pressure condition.

  • PDF

Ignition of Fuel-rich Propellant Coated with Ignition Support Material in the Ramjet Combustor Condition (램젯 연소실 조건에서 점화보조제가 도포된 Fuel-rich 추진제의 점화)

  • Jung, Woosuk;Baek, Seungkwan;Kim, Youngil;Kwon, Taesoo;Park, Juhyun;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.79-88
    • /
    • 2017
  • Ignition test of the fuel-rich propellant coated with ignition support material in the ramjet combustor condition was conducted. Ignition delay and flame holding was measured. Fuel grain consist of HTPB mixed with AP particle 15 wt.%, Al particle 5 wt.%. To cause the short ignition delay, ignition support consist of $NC/BKNO_3$ and composite propellant was coated to the fuel grain. Ethanol blended $H_2O_2$ gas generator control the temperature, pressure, $O_2$ concentration in the oxidizer gas in the air. Gas is supplied with mass flux of $200kg/m^2s$. Through the test ignition support operated well and ignition delay of 0.6 second and the Flame was sustained.