• Title/Summary/Keyword: ignition energy

Search Result 492, Processing Time 0.025 seconds

Ignition and flame propagation in hydrogen-air layers from a geological nuclear waste repository: A preliminary study

  • Ryu, Je Ir;Woo, Seung Min;Lee, Manseok;Yoon, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.130-137
    • /
    • 2022
  • In the geological repository of radioactive nuclear waste, anaerobic corrosion can generate hydrogen, and may conservatively lead to the production of hydrogen-air layer. The accumulated hydrogen may cause a hazardous flame propagation resulting from any potential ignition sources. This study numerically investigates the processes of ignition and flame propagation in the layered mixture. Simple geometry was chosen to represent the geological repository, and reactive flow simulations were performed with different ignition power, energy, and locations. The simulation results revealed the effects of power and energy of ignition source, which were also analyzed theoretically. The mechanism of layered flame propagation was suggested, which includes three stages: propagation into the hydrogen area, downward propagation due to the product gas, and horizontal propagation along the top wall. To investigate the effect of the ignition source location, simulations with eight different positions were performed, and the boundary of hazardous ignition area was identified. The simulation results were also explained through scaling analysis. This study evaluates the potential risk of the accumulated hydrogen in geological repository, and illustrates the layered flame propagation in related ignition scenarios.

A Study on the Autoignition of Granulated Activated Carbon with Change of Oxygen Concentration (산소농도 변화에 따른 입상활성탄의 자연발화에 관한 연구)

  • 목연수;최재욱;류동현;최일곤;김상렬
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.84-91
    • /
    • 1995
  • The characteristics of critical spontaneous ignition of granulated activated carbon were investigated In atmospheres of differing oxygen concentration. At the same concentration the larger vessels yielded the lower critical spontaneous ignition temperature. At the same vessel, as the concentration of oxygen was reduced, Ignition occurred later and at higher ambient temperature, and critical spontaneous ignition temperature increased. The apparent activation energy calculated from the Frank-Kamenetskii's ignition theory appeared to be the slight different value respectively and the mean apparent activation energy was 19850㎈/㏖.

  • PDF

A Study on the Effects of Ignition Energy and Systems on the Flame Propagation in a Constant Volume Combustion Chamber (정적연소기에서 점화에너지와 점화장치가 화염전파속도에 미치는 영향에 관한 연구)

  • 송정훈;서영호;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.45-56
    • /
    • 2001
  • A constant volume combustion chamber is employed to investigate the initial flame kernel development and flame propagation of gasoline-air mixtures with various ignition systems, ignition energy and spark plug electrodes. To do this research, four ignition systems are designed and manufactured, and the ignition energy is controlled by varying the dwell time. Several kinds of spark plugs are also made to analyze the effects of electrodes on flame kernel development. The velocity of flame propagation is measured by the laser deflection method. The output laser beam from He-Ne laser is divided into three parallel beams by a beam splitter. The splitted beams pass through the combustion chamber. They are deflected when contacted with flame front, and the voltage signals from photodiodes change due to deflection. The results show that higher ignition energy raises the flame propagation speed especially under the fuel lean operation. The wider electrode gap, smaller electrode diameter and sharper electrode tip make the speed of the initial flame propagation faster. The speed of the initial flame propagation is affected by electrode material as well. Electrode material with lower melting temperature help the initial flame propagation.

  • PDF

A Study of Minimum Ignition Energy Measurement of Explosive Powders Caused by Electrostatic Discharges (정전기 방전시의 분체류의 최소착화에너지 측정에 관한 연구)

  • 이동훈;목연수;최재욱;신중현;류상민;조일건;정준채
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.05a
    • /
    • pp.67-75
    • /
    • 1997
  • To establish testing method for ignition energy of explosive powders caused by electrostatic discharge, one testing method using a very small quantity of tested powders ( Frima ) was proposed, and the influence of discharge - limiting resistance connected in series into a capacitive discharge circuit on ignition energies of explosive powders was investigated using, as tested powders. As a result the minimum ignition energy was 9 mJ when discharge-limiting resistance was 300 k$\Omega$. The reason for the dependence of ignition energy on discharge-limiting resistance was thought to the difference in the type of electrostatic discharge, such as arc or glow discharge, from the observation of discharging wave forms.

  • PDF

A Development of Plasma Jet to Realize Ultra Lean Burn (초희박 연소를 실현하기 위한 플라즈마 제트의 개발)

  • 오병진;박정서;김문헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 1998
  • The investigation regarding the ignition system of a plasma jet explored by using a constant volume vessel. The purpose of this study is to elucidate relation between the characteristics of the configuration and jet ejection of plasma jet plug, when the sub energy were supplied at plasma jet ignition system. From the results of a visualization by the schlieren system, the jut ejection for plasma jet ignition are depended on the jet plug configuration and sub energy, but the configuration of plasma jet plug is more influenced than the sub energy on the plasma jet ejection. And the plasma jet ignition strongly influences upon the combustion enhancement than the conventional spark ignition.

  • PDF

Initiation of Gaseous Premixed Flame (예혼합기체 연료의 화염생성에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.135-139
    • /
    • 1989
  • The flame initiation of an infinite fuel system exposed to a planar ignition kernel has been investigated numerically. The aim has been to promote an understanding of the flame initiation by using the simplest mathematical formulation which retains the essential physical features. It has been found that there exists a minimum ignition energy below which a combustion wave cannot be initiated. For a fixed value of Lewis number, the same flame progation velocity has been obtained irregardless of the amount ignition energy supplied. Furthermore, for a fixed energy input there is a maximum Lewis number over which the flame cannot be initiated.

A Study on Minimum Ignition Energy by Controlled Discharge Energy (방전에너지 제어에 의한 최소점화에너지의 고찰)

  • Choi, Sang-Won;Ohsawa, Atsushi
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.36-39
    • /
    • 2007
  • It is important to know Minimum Ignition Energy(MIE) of flammable materials for ignition hazard of chemical processes etc.. Currently a capacitor discharge is used mainly to measure the MIE. Then, it is impossible to control actively discharge energies and discharge time because the MIE measurement uses a high voltage capacitor and fixed capacitor. However, the control of discharge energy and discharge time will be convenient if self-sustain discharge is used. In this paper, we measured the MIE by self-sustain discharge of a pulse shape to propose the new measuring method of the MIE. AS a result, ignition energies are increased gradually as discharge duration time gets longer, and discharge current grows larger. Also, an arc discharge and a glow discharge occurred during the experimental period, and the ignition by glow discharges happened when discharge duration time was $90{\mu}s$, discharge current was 8A and 1A Especially, the MIE occurred the 0.05mm and 0.08mm of the gap distance between discharge electrode in the same discharge duration time.

An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material (방전전극 재질과 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

A Study on Explosion Characteristics of Terephthalic Acid (테레프탈산의 분진 폭발특성에 관한 연구)

  • 목연수;장성록
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.121-125
    • /
    • 2000
  • This study was executed by dust explosion experiment of terephthalic acid which was widely used for various purposes of food packing material and film etc. and the demand was rapidly increasing. The particle size and concentration of dust affected the minimum ignition energy largely and the lean concentration and the minimum ignition energy in the range of this study were obtained 50$g/m^3$ and 19mJ respectively. Minimum ignition energy was shown at the 4 and 5mm gap distance of discharge electrode, and when the gap distance was below 2mm the explosion could not generated although the sufficient energy was given. It was also found that the ignition energy decreased linearly with the decreasing of dust mean particle size.

  • PDF

Iginition energy effects and noxious product gases of combustible premixed gas in closed space (밀폐공간내의 가연성가스의 점화외 유독성 가스 발생에 대한 연구)

  • 김한석;오규형;최연석;문정기
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.35-42
    • /
    • 1992
  • Ignition energy effects of concentration of mixed gas In closed cylindrical vessel(1, 832㎤) are studied. The ignition energy ranged from 25 Joule to 110 Joule, and hidrogen and methane gases were used for flammable gas at stoichiometric condition with oxygen gas and nitrogen gas (N2) was for inert gas, which concentration was maximum 60% . The explosion pressure, temperature, concentration of product gases were calculated. It is found that - The explosion pressure and explosion velocity increase with ignition energy. - The gradience of explosion velocity with ignition energy is steeper than explosion pressure. - The results of calculation are similiar with results of experiment. - NOx is not serious product gas for methane and hydrogen gas, but CO is serious at certain concentration for methane in asphyxiation.

  • PDF