• Title/Summary/Keyword: igneous rocks

Search Result 288, Processing Time 0.022 seconds

SHRIMP Zircon U-Pb Age and Geochemistry of Igneous Rocks in the Ssangyong and Yongchu Valleys and Mungyeong Saejae Geosites, Mungyeong Geopark (문경지질공원 쌍룡계곡, 용추계곡, 문경새재 지질명소 화성암류의 SHRIMP 저어콘 U-Pb 연령과 지구화학)

  • Wonseok Cheong;Yoonsup Kim;Giun Han;Taehwan Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.73-94
    • /
    • 2023
  • We carried out the sensitive high resolution ion microprobe (SHRIMP) zircon U-Pb age dating and whole-rock geochemical analysis of granitoids and felsic porphyries in the Ssangyong Valley, Yongchu Valley, and Mungyeong Saejae geosites in the Mungyeong Geopark. The igneous rocks crop out in the western, northwestern and central parts of the Mungyeong city area, respectively, and intruded (meta)sedimentary successions of the Ogcheon Metamorphic Belt, Cambro-Ordovician Mungyeong Group and Jurrasic Daedong Group. The U-Pb isotopic compositions of zircon from two felsic porphyries and one granite samples in the Ssanyeong Valley yielded the Cretaceous intrusion ages of 93.9±3.3 Ma (tσ), 95.1±4.0 Ma (tσ) and 94.4±2.0 Ma (tσ), respectively. On the other hand, a felsic dike sample and a granite in the Yongchu Valley and a porphyritic granite in the Mungyeong Saejae had intrusion ages of 90.2±2.0 Ma (tσ), 91.0±3.0 Ma (tσ) and 88.6±1.5 Ma (tσ), respectively. Based on the average standard error calculated in combination with results of previous studies in this area (Lee et al., 2010; Yi et al., 2014; Aum et al., 2019), the geochronological results show that spatial variation in intrusion age of ~5 Myr between the Ssangyong (94.5±0.2 Ma) and Yongchu Valleys (89.7±0.4 Ma) is apparent. The geochemical compositions of major and trace elements in the samples showed an affinity of typical post-orogenic granite, indicating their petrogenesis during the late stage of Early Cretaceous magmatic activity possibly in association with subduction events of the Izanagi Plate.

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces (경상남북도 지하수 중 자연방사성물질 우라늄과 라돈의 산출특징과 함량분포에 대한 수리지화학적 연구)

  • Cho, Byong Wook;Choo, Chang Oh;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Kim, Moon Su
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.551-574
    • /
    • 2014
  • The occurrence, distribution, and hydrogeochemical characteristics of uranium and radon in groundwater within different lithologies in Gyeongnam and Gyeongbuk provinces were investigated. A total of 201 groundwater samples from sedimentary rocks taking a large portion of the geology and from igneous rocks taking a small portion of the geology were analyzed and examined using factor analysis. Their radionuclide levels were used to construct detailed concentration maps. The groundwater types, defined using a Piper diagram, are mainly Ca-$HCO_3$ with less Na-$HCO_3$. Among the samples, one site exceeds $30{\mu}g/L$ of uranium (i.e., the maximum contaminant level of the USEPA) and three sites exceed 4,000 pCi/L of radon (i.e., the alternative maximum contaminant level). No samples were found to exceed the 15 pCi/L level of gross alpha or the 5 pCi/L level of radium. The concentration of uranium ranges from 0.02 to $53.7{\mu}g/L$, with a mean of $1.56{\mu}g/L$, a median of $0.47{\mu}g/L$, and a standard deviation of $4.3{\mu}g/L$. The mean concentrations of uranium for the different geological units increase in the following order: Shindong Group, Granites, Hayang Group, Yucheon Group, and Tertiary sedimentary rocks. The concentration of radon ranges from 2 to 8,740 pCi/L, with an mean of 754 pCi/L, a median of 510 pCi/L, and a standard deviation of 907 pCi/L. The mean radon concentrations for the investigated geological units increase in the following order: Granites, Yucheon Group, Tertiary sedimentary rocks, Hayang Group and Shindong Group. According to the factor analysis for each geological unit, uranium and radon behave independently of each other with no specific correlation. However, radionuclides show close relationships with some components. Regional investigations of radionuclides throughout the country require an integrated approach that considers the main lithological units as well as administrative districts.

Geochronological and Geotectonic Implications of the Serpentinite Bodies in the Hongseong Area, Central-western Korean Peninsula (한반도 중서부 홍성지역 내에 분포하는 사문암체의 지질연대학 및 지구조적 의미)

  • Kim, Sung Won;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.249-267
    • /
    • 2016
  • The Hongseong area of the central-western Korean Peninsula is considered to be a part of collision zone that is tectonically correlated to the Qinling-Dabie-Sulu belt of China. The area includes the elliptical-shaped serpentinized ultramafic bodies, together with mafic rocks. The studied bodies are in contact with the surrounded Neoproterozoic alkali granites at the Baekdong and Wonnojeon bodies and the Paleoproterozoic Yugu gneiss at the Bibong body. The Baekdong body contains the blocks of the Neoproterozoic alkali granites and the Late Paleozoic metabasites. The Bibong body also includes the Neoproterozoic alkali granite blocks. The Mesozoic intrusive rocks are also recognized at the Baekdong, Wonnojeon and Bibong bodies. On the other hand, the Early Cretaceous volcanic rocks are occurred at the Bibong body. The detrital zircon SHRIMP U-Pb ages of the serpentinites at three bodies range variously from Neoarchean to Middle Paleozoic at the Baekdong body, and from Neoarchean to Early Cretaceous at the Wonnojeon and Bibong bodies. Although serpentinization does not generally produce minerals suitable for direct isotopic dating, the youngest Middle Paleozoic age at the Baekdong body and the Early Cretaceous age at the Wonnojeon and Bibong bodies indicate the possible upper age limit for the (re)serpentinization. Especially, the Early Cretaceous serpentinization ages may be related to the widespread Early Cretaceous igneous activity in the central-southern Korean Peninsula. Age results for the serpentinite bodies and the included blocks of the studied serpentinized ultramafic bodies in the Hongseong area, therefore, provide several possible interpretations for the serpentinization ages of the ultramafic rocks as well as the geotectonic implications of serpentinization, requiring more detailed study including other serpentinized ultramafic bodies in the Hongseong area.

Mineralogy and Chemical Compositions of Dangdu Pb-Zn Deposit (당두 연-아연 광상의 산출광물과 화학조성)

  • Lim, Onnuri;Yu, Jaehyung;Koh, Sang Mo;Heo, Chul Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.123-140
    • /
    • 2013
  • The Dangdu Pb-Zn deposit is located at approximately 10 km south of Jecheon, Korea. Geology of Dangdu deposit area consists of Pre-cambrian metamorphic rocks, Ordovician sedimentary rocks, Jurassic and Cretaceous igneous rocks. The ore deposit is developed along the fracture trending $N20{\sim}40^{\circ}W$ in Ordovician limestone and is considered to be a skarn type ore deposit. The shape of ore bodies developed in the Dangdu ore deposit can be divided into lens-form(two ore bodies of -30 m level adit and one ore body of -63 m level adit) and pocket-form developed in -30 m level adit. Ore minerals observed in the ore deposits are magnetite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, cosalite, marcasite, hessite, native Bi and bismuthinite. Chemical composition of sphalerite ranges FeS 14.14~18.08 mole%, CdS 0.44~0.70 mole%, MnS 0.52~1.13, 1.53~2.09 mole%. Galena contains a small amount of silver with an average of 0.54 wt.%. An average composition of cosalite is Ag 2.43 wt.%, Bi 44.36 wt.%, Pb 35.05 wt.% which results the chemical formula of cosalite as $Pb_{1.7}Bi_{2.1}Ag_{0.2}S_5$. Skarn minerals consist of epidote, garnet, pyroxene, tremolite, quartz and calcite. The zoning pattern of the ore deposit can be subdivided into epidote-clinopyroxene zone, epidote-clinopyroxene-chlorite zone and epidote-garnet-clinopyroxene zone from the central part of the ore body towards the wall rocks. The chemical composition of garnet shows an increasing trend of grossular from epidote-clinopyroxene zone to epidote-garnet-clinopyroxene zone. Clinopyroxene occurs as a solid solution of diopside and hedenbergite, and the ratio of johannsenite increases from epidote-clinopyroxene zone to epidote-clinopyroxene-chlorite and epidote-garnet-clinopyroxene zones. The mineralization of the ore deposit is considered to be one stage event which can be separated into early skarn mineralization stage, middle ore mineralization stage and late low temperature mineralization stage. The temperature estimation from the low temperature mineralization range from $125{\sim}300^{\circ}C$ which is considered to be representing the temperature of late mineralization.

Hydrogeochemistry of Groundwater Occurring in Complex Geological Environment of Yeongdong Area, Chungbuk, Korea (충북 영동군 복합 지질지역에서 산출되는 지하수의 수리지화학적 특성)

  • Moon, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.445-466
    • /
    • 2017
  • Yeongdong area is located in the contact zone between central southeastern Ogcheon belt and Yeongnam massif, in which Cretaceous Yeongdong basin exists. Therefore, the study area has complex geological environment of various geological age and rock types such as Precambrian metamorphic rocks, age-unknown Ogcheon Supergroup, Paleozoic/Mesozoic sedimentary rocks, Mesozoic igneous rocks and Quaternary alluvial deposits. This study focuses on the link between the various geology and water type, and discussed the source of some major ions and their related water-rock interaction. For this study, the field parameters and ion concentrations for twenty alluvial/weathered and eighty bedrock aquifer wells were used. Statistical analysis indicates that there was no significant differences in groundwater quality between wet and dry seasons. Although various types were observed due to complex geology, 80 to 84 % of samples showed $Ca-HCO_3$ water type. Some wells placed in alluvial/weathered aquifers of Precambrian metamorphic and Jurassic granitic terrains showed somewhat elevated $NO_3$ and Cl concentrations. $Mg-HCO_3$ typed waters prevailed in Cretaceous Yeongdong sedimentary rocks. The deeper wells placed in bedrock aquifers showed complicated water types varying from $Ca-HCO_3$ through $Ca-Cl/SO_4/NO_3$ to $Na-HCO_3$ and Na-Cl type. Groundwater samples with $Na-HCO_3$ or Na-Cl types are generally high in F concentrations, indicating more influences of water-rock interaction within mineralized/hydrothermal alteration zone by Cretaceous porphyry or granites. This study revealed that many deep-seated aquifer had been contaminated by $NO_3$, especially prominent in Jurassic granites area. Based on molar ratios of $HCO_3/Ca$, $HCO_3/Na$, Na/Si, it can be inferred that Ca and $HCO_3$ components of most groundwater in alluvial/weathered aquifer wells were definitely related with dissolution of calcite. On the other hand, Ca and $HCO_3$ in bedrock aquifer seem to be due to dissolution of feldspar besides calcite. However, these molar ratios require other mechanism except simple weathering process causing feldspar to be broken into kaolinite. The origin of $HCO_3$ of some groundwater occurring in Cretaceous Yeongdong sedimentary rock area seems to be from dissolution of dolomite($MgCO_3$) or strontianite($SrCO_3$) as well.

Geochemistry and Genesis of Hydrothermal Cu Deposits in the Gyeongsang Basin, Korea : Hwacheon-ri Mineralized Area (경상분지내 열수동광상의 지화학 및 성인연구 : 화천리지역 광화대)

  • So, Chil-Sup;Choi, Sang-Hoon;Yun, Seong-Taek
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.337-350
    • /
    • 1995
  • The Hwacheon-ri mineralized area is located within the Cretaceous Gyeongsang Basin of the Korean peninsula. The mineralized area includes the Hwacheon, Daeweon, Kuryong and Cheongryong mines. Each of these mines occurs along copper-bearing hydrothermal quartz veins that crosscut late Cretaceous volcanic rocks, although some disseminated ores in host rocks also exist locally. Mineralization can be separated into three distinct stages (I, II, and III) which developed along preexisting fracture zones. Stage I is ore-bearing, whereas stages II and III are barren. The main phase of ore mineralization, stage I, can be classified into three substages (Ia, Ib and Ic) based on ore mineral assemblages and textures. Substage Ia is characterized by pyrite-arsenopyrite-molybdenite-pyrrhotite assemblage and is most common at the Hwacheon deposit. Substage Ib is represented by main precipitation of Cu, Zn, and Pb minerals. Substage Ic is characteristic of hematite occurrence and is shown only at the Kuryong and Cheongryong deposits. Some differences in the ore mineralization at each mine in the area suggest that the evolution of hydrothermal fluids in the area varied in space (both vertically and horizontally) with respect to igneous rocks relating the ore mineralization. Fluid inclusion data show that stage I ore mineralization mainly occurred at temperatures between ${\approx}350^{\circ}$ and ${\approx}200^{\circ}C$ from fluids with salinities between 9.2 and 0.5 wt.% eq. NaCl. In the waning period of substage Ia, the high temperature and salinity fluid gave way to progressively cooler, more dilute fluids of later substage Ib and Ic (down to $200^{\circ}C$, 0 wt.% NaCl). There is a systematic decrease in the calculated ${\delta}^{18}O_{H2O}$ values with paragenetic time in the Hwacheon-ri hydrothermal system from values of ${\approx}2.7$‰ for substage Ia, through ${\approx}-2.8$‰ for substage Ib, to ${\approx}-9.9$‰ for substage Ic. The ${\delta}D$ values of fluid inclusion water also decrease with decreasing temperature (except for the Daeweon deposit) from -62‰ (substage Ia) to -80‰ (substage Ic and stage III). These trends are interpreted to indicate the progressive cooler, more oxidizing unexchanged meteoric water inundation of an initial hydrothermal system which is composed of highly exchanged meteoric water. Equilibrium thermodynamic interpretation of the mineral assemblages with the variation in amounts of chalcopyrite through the paragenetic time, and the evolution of the Hwacheon-ri hydrothermal fluids indicate that the solubility of copper chloride complexes in the hydrothermal system was mainly controlled by the variation of temperature and $fo_2$ conditions.

  • PDF

Geochemical Characteristics of Black Slate and Coaly Slate from the Uranium Deposit in Deokpyeong Area (덕평리 지역 우라늄광상의 흑색점판암과 탄질점판암의 지구화학적 특성)

  • Shin, Dong-Bok;Kim, Su-Jeong
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.373-386
    • /
    • 2011
  • Geochemical study was performed on black slates and interbedded U-bearing coaly slates in Deokpyeongri area, the representative uranium mineralized district of the Ogcheon Metamorphic Belt, to discuss the genetic environments of the uranium deposit. REE concentration (254 ppm) of the black slates is higher than that (169 ppm) of the coaly slates and NASC-normalized REE patterns of the coaly slates show remarkable positive Eu anomaly. l11e redox-sensitive trace elements such as V, Cr, Co, Ni, Mo and U in the coaly slates are highly enriched compared to the black slates, especially for V of 24 times, Mo of 62 times, and U of 60 times. In additions, Pd and Pt are also enriched in the coaly slates. Positive Eu anomaly and the noticeable enrichment of the elements listed above compared to those of NASC indicate that those elements were not derived from common seawater but deposited under high temperature and reducing environment of submarine hydrothermal activities. Wide compositional ranges of major elements ($SiO_2/Al_2O_3$: 3.98~11.88, $Al_2O_3/Na_2O$: 25.6~139.06, $K_2O/Na_2O$: 6.80~46.85) also suggest that the source rocks of the sediments are mixtures of sedimentary rocks and igneous rocks. Higher sulfur contents in the coaly slates, 2.6 wt.%, than those in the black slates, 0.6 wt.% also indicates that the former was influenced by hydrothermal activities containing much sulfur. These geochemical characteristics are similar to the genetic environments of South China type PGE deposits (Mo-Ni-Zn-PGE) which is geotectonically correlated with the Ogcheon Metamorphic Belt and is known as sedimentary-exhalative deposits. In conclusions, the uranium and other metallic elements mineralization seems to have occurred in the sedimentary basin that was affected by submarine hydrothermal activities and rich in organic materials under oxygen-poor environments as well.

Ore Mineralization of The Hadong Fe-Ti-bearing Ore Bodies in the Hadong-Sancheong Anorthosite Complexes (하동-산청 회장암체 내 부존하는 하동 함 철-티탄 광체의 광화작용)

  • Lee, In-Gyeong;Jun, Youngshik;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.