Browse > Article
http://dx.doi.org/10.9719/EEG.2011.44.5.373

Geochemical Characteristics of Black Slate and Coaly Slate from the Uranium Deposit in Deokpyeong Area  

Shin, Dong-Bok (Department of Geoenvironmental Sciences, Kongju National University)
Kim, Su-Jeong (Department of Geoenvironmental Sciences, Kongju National University)
Publication Information
Economic and Environmental Geology / v.44, no.5, 2011 , pp. 373-386 More about this Journal
Abstract
Geochemical study was performed on black slates and interbedded U-bearing coaly slates in Deokpyeongri area, the representative uranium mineralized district of the Ogcheon Metamorphic Belt, to discuss the genetic environments of the uranium deposit. REE concentration (254 ppm) of the black slates is higher than that (169 ppm) of the coaly slates and NASC-normalized REE patterns of the coaly slates show remarkable positive Eu anomaly. l11e redox-sensitive trace elements such as V, Cr, Co, Ni, Mo and U in the coaly slates are highly enriched compared to the black slates, especially for V of 24 times, Mo of 62 times, and U of 60 times. In additions, Pd and Pt are also enriched in the coaly slates. Positive Eu anomaly and the noticeable enrichment of the elements listed above compared to those of NASC indicate that those elements were not derived from common seawater but deposited under high temperature and reducing environment of submarine hydrothermal activities. Wide compositional ranges of major elements ($SiO_2/Al_2O_3$: 3.98~11.88, $Al_2O_3/Na_2O$: 25.6~139.06, $K_2O/Na_2O$: 6.80~46.85) also suggest that the source rocks of the sediments are mixtures of sedimentary rocks and igneous rocks. Higher sulfur contents in the coaly slates, 2.6 wt.%, than those in the black slates, 0.6 wt.% also indicates that the former was influenced by hydrothermal activities containing much sulfur. These geochemical characteristics are similar to the genetic environments of South China type PGE deposits (Mo-Ni-Zn-PGE) which is geotectonically correlated with the Ogcheon Metamorphic Belt and is known as sedimentary-exhalative deposits. In conclusions, the uranium and other metallic elements mineralization seems to have occurred in the sedimentary basin that was affected by submarine hydrothermal activities and rich in organic materials under oxygen-poor environments as well.
Keywords
Deokpyeongri; uranium deposits; black slate; coaly slate; geochemical characteristics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yu, B., Dong, H., Widom, E., Chen, J. and Lin, C. (2009) Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Jour. Asian Earth Sci., v.34, p.418-436.   DOI   ScienceOn
2 Michard, A., Albarede, F., Michard, G., Minster, J.F. and Charlou, J.L. (1983) Rare-earth elements an uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 degrees N). Nature, v.303, p.795-797.   DOI   ScienceOn
3 Mills, R.A., Thomson, J., Elderfield, H., Hinton, R.W. and Hyslop, E. (1994) Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., v.124, p.35-47.   DOI   ScienceOn
4 Parr, J.M. (1992) Rare-earth element distribution in the exhalites associated with Broken Hill-type mineralization at the Pinacles deposit, New South Wales, Australia. Chem. Geol., v.100, p.73-91.   DOI
5 Pasava, J. (1993) Anoxic sediments - an important environment for PGE: an overview. Ore Geol. Rev., v.8, p.425-445.   DOI   ScienceOn
6 Ruhlin, D.E. and Owen, R.M. (1986) The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise. Examination of a seawater scavenging mechanism. Geochim. Cosmochim. Acta, v.50, p.393-400.   DOI   ScienceOn
7 Sawlowicz, Z. (1993) Iridium and other platinum-group elements as geochemical markers in sedimentary environments. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.104, p.253-270.   DOI
8 Shearme, S., Cronan, D.S. and Rona, P.A. (1983) Geochemistry of sediments from the TAG hydrothermal field, Mid-Atlantic Ridge at latitude 26°N. Mar. Geol., v.51, p.269-291.   DOI   ScienceOn
9 Sotto, D. and Yoshiyuki, N. (1999) Rare earth elements in seawater: particle association, shale normalization, and Ce oxidation. Geochim. Cosmochim. Acta, v.63, p.363-372.   DOI   ScienceOn
10 Steiner, M., Wallis, E., Erdtmann, B.D., Zhao, Y. and Yang, R. (2001) Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils.insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.169, p.165-191.   DOI
11 Thomson, J., Higgs, N.C., Croudace, I.W., Colley, S. and Hydes, D.J. (1993) Redox zonation of elements at an oxic/post-oxic boundary deep sea sediments. Geochim. Cosmochim. Acta, v.75, p.579-595.
12 Wedepohl, K.H. (1974) Handbook of Geochemistry. Springer-Verlag, Berlin.
13 Whitehead, R.E.S., Davies, J.F. and Goodfellow, W.D. (1992) Lithogeochemical patterns related to sedex mineralization, Sudbury Basin, Canada. Chem. Geol., v.98, p.87-101.   DOI   ScienceOn
14 Lee, C.H. and Lee, H.K. (1997) Geochemistry and mineralogy of metapelite and barium-vanadium muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea. Econ. Environ. Geol., v.30, p.35-49.
15 Lee, D.J. (1986) Mineralogy of low-grade uranium ores in the black slate of the Ogcheon Group, Korea. Jour. Korean Inst. Mining Geol., v.19, p.133-146.
16 Lee, D.S., Yun, S.K., Lee, J.H. and Kim, J.T. (1986) Lithologic and structural controls and geochemistry of uranium deposition in the Ogcheon Black-Slate Formation. Jour. Korean Inst. Mining Geol., v.19, p.19-41.
17 Lee, J.H. and Kim, J.H. (1972) Geologic map of Goesan Sheet 1:50,000. Geological and mineral institute of Korea, 24 pp.
18 Lee, M.S. (1978) Geochemical study of granite intrusions in the area of uranium bearing formation of the Ogcheon System. Jour. Geol. Soc. Korea, v.14, p.113- 119.
19 Lee, M.S. and Chon, H.T. (1980) Geochemical correlations between uranium and other components in Ubearing formations of Ogcheon Belt. Jour. Korean Inst. Mining Geol., v.13, p.241-246.
20 Lee, M.S. and Kim, S.W. (1985) Uranium distribution petterns and U-mineral in the U-bearing clay slate of Ogcheon system. Jour. Korean Inst. Mining Geol., v.18, p.135-138.
21 Lee, S.M., Park, H.I., Kim, S.J., Park, B.S. and Lee, S.H. (1981) Genesis of the uranium deposits in the metasediments of Deogpyeong area, Goesan-gun. Jour. Geol. Soc. Korea, v.17, p.53-68.
22 Libes, S.M. (1992) An Introduction to Marine Biogeochemistry. Wiley, New York.
23 Lott, D.A., Coveney, R.M. and Murowchick, J.B. (1999) Sedimentary exhalative Nickel-Molybdenum ores in South China. Econ. Geol., v.94, p.1051-1066.   DOI   ScienceOn
24 Manikyamba, C., Balaram, V. and Naqvi, S.M. (1993) Geochemical signatures of polygenetic origin of a banded iron formation (BIF) of the Archaran Sandur greenstone belt (schist belt) Karnataka nucleus, India. Precam. Res., v.61, p.137-164.   DOI   ScienceOn
25 McLennan, S.M., Taylor, S.R. and McGregor, V.R. (1984) Geochemistry of Archean metasedimentary rocks, West Greenland. Geochim. Cosmochim. Acta, v.48, p.1-13.   DOI   ScienceOn
26 Michard, A. and Albarede, F. (1986) The REE content of some hydrothermal fluids. Chem. Geol., v.55, p.51-60.   DOI   ScienceOn
27 Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The ''North American shale composite'': its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, v.48, p.2469-482.   DOI   ScienceOn
28 Holland, H.D. (1979) Metals in black shales - a reassessment. Econ. Geol., v.74, p.1676-1679.   DOI
29 Hulbert, L., Carne, R., Gregoire, C. and Paktunc, D. (1992) Sedimentary nickel, zinc, and platinum-groupelement mineralization in Devonian black shales at the Nickel property, Yukon, Canada: a new deposit type. Explor. Min. Geol., v.1, p.39-62.
30 Jedwab, J., Blanc, G. and Boulegue, J. (1989) Vanadiferous minerals from the Nereus Deep, Red Sea. Terra Nova, v.1, p.188-194.   DOI
31 KIGAM(Korea Institute of Geoscience and Mineral Resources), (2010) Total cycle technical development for securing of domestic and overseas uranium resources. KIGAM report, 122pp.
32 Jeong, G.Y. (2006) Mineralogy and geochemistry of metalliferous black slates in the Okcheon metamorphic belt, Korea: a metamorphic analogue of black shales in the South China block. Mineral. Deposita, v.41, p.469-481.   DOI   ScienceOn
33 Jeong, G.Y. and Lee, S.H. (2001) Form of molybdenum in the carbonaceous black slates of the Ogcheon Belt. Jour. Miner. Soc. Korea, v.14, p.52-57.
34 Kang, S.A., Kim, Y.J. and Lee, Y.J. (2010) Genetic consideration of uranium and vanadium minerals in black slates of the Ogcheon Belt. (abstract), Korean Soc. Econ. Env. Geol., p.95.
35 Kim, J.H. (1989) Geochemistry and genesis of Guryongsan (Ogcheon) uraniferous black slate. Jour. Korean Inst. Mining Geol., v.22, p.35-63.
36 Kim, T.H. and Cho, M. (2000) Distribution and igneous texture of metasedimentary rocks in ''Munjuri Formation'' of the Ogcheon Metamorphic Belt: existence of high-volcanicity rift. (abstract), Petrol. Soc. Korea, p.86.
37 Klinkhammer, G., Elderfield, H. and Hudson, A. (1983) Rare earth elements in seawater near hydrothermal vents. Nature, v.305, p.185-188.   DOI   ScienceOn
38 Koh, H.J. (1995) Structural analysis and tectonic evolution of the Ogcheon Supergroup, Goesan, Central part of the Ogcheon Belt, Korea. Ph.D. Thesis (Unpubl), Seoul National Univ., 282pp.
39 Cluzel, D., Cadet, J.P. and Lapierre, H. (1990) Geodynamics of the Ogcheon belt (South Korea). Tectonophysics, v.183, p.41-56.   DOI   ScienceOn
40 Cho, M. and Kim, H. (2002) Metamorphic Evolution of the Ogcheon Metamorphic Belt: Review of Recent Studies and Remaining Problems. Jour. Petrol. Soc. Korea, v.11, p.121-137.
41 Distler, V.V., Yudovskaya, M.A., Mitrofanov, G.L., Prokof'ev, V.Y. and Lishnevskii, E.N. (2004) Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia. Ore Geol. Rev., v.24, p.7-44.   DOI   ScienceOn
42 Coveney, R.M. and Martin, S.P. (1983) Molybdenum and other heavy metals of the Mecca quarry and Logan quarry shales. Econ. Geol., v.78, p.132-149.   DOI
43 Coveney, R.M. and Nansheng, C. (1991) Ni-Mo-PGE-Aurich ores in Chinese black shales and speculations on possible analogues in the United States. Mineral. Deposita, v.26, p.83-88.
44 Degens, E.T., Williams, E.G. and Keith, E.G. (1958) Application of geochemical criteria [Pennsylvania], part 2 of environmental studies of carboniferous sediments. AAPG Bull., v.42, p.981-997.
45 Francois, R. (1988) A study on the regulation of the concentration of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn, and Mo) in the Saanich Inlet sediments, British Columbia. Mar. Geol., v.83, p.285-308.   DOI
46 Green, A. and Peck, D. (2005) Platinum group elements exploration: Economic considerations and geological criteria. In: Mungall, J.E.(eds.), Exploration for platinum group element deposits. Short Course Series v.35, MAC, p.247-274.
47 Butler, I.B. and Nestbitt, R.W. (1999) Trace element dis tributions in the chalcopyrite wall of a black smoker chimney: insights from a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet Sci. Lett., v.167, p.335-345.   DOI
48 Brumsak, H.J. (1986) The inorganic geochemistry of Cretaceous black shales in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes, C.P., Shaklet, N.J. (Eds.), North Atlantic Paleoceanography. Spec. Publ. GSA, v.21, p.447- 462.   DOI