• Title/Summary/Keyword: igneous rocks

Search Result 288, Processing Time 0.022 seconds

Precambrian Crustal Evolution of the Korean Peninsula (한반도 선캠브리아 지각진화사)

  • Lee, Seung-Ryeol;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.89-112
    • /
    • 2012
  • The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.

Groundwater Quality in Gyeongnam Region Using Groundwater Quality Monitoring Data: Characteristics According to Depth and Geological Features by Background Water Quality Exclusive Monitoring Network (지하수수질측정망 자료를 활용한 경남지역 지하수 수질: 배경수질전용측정망에 의한 심도·지질별 특성)

  • Cha, Suyeon;Seo, Yang Gon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.39-54
    • /
    • 2020
  • This study analyzed the groundwater quality according to the depth and geological features in Gyeongsangnam-do area using groundwater quality monitoring network data to grasp the groundwater quality characteristics and to provide basic data for policy making on efficient groundwater management. Five hundred and three data sets were acquired from background water quality exclusive monitoring network in soil groundwater information system for five years (2013 ~ 2017). Except for the total coliforms and tracer items such as mercury, phenol, and others, the parameters of water quality were significant or very significant, depending on depth and geological features. As the depth got deeper, the average value of pH and electrical conductivity increased; water temperature, dissolved oxygen, oxide reduction potential, arsenic, total coliforms, and turbidity decreased; and total unfit rate for drinking water standards was lower. It was found that the sum of the positive and negative ions was the highest in the clastic sedimentary rock and the lowest in metamorphic rock. The total unfit rate for drinking water standards was the highest for metamorphic rocks, followed by clastic sedimentary rock and unconsolidated sediments and, finally, intrusive igneous rock with the lowest penetration. The Na-Cl water type, which indicated the possibility of contamination by external pollutants, appeared only at some points in shallow depths and in clastic sedimentary rocks.

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Petrology of Charnockite in Sancheong Area (산청지역에 분포하는 챠노카이트의 암석학적 연구)

  • Lee, Sang-Won;Ock, Soo-Seck;Lee, Young-Taek
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.

The Study on the Water Quality Characteristics of Barium in the Raw Water of Domestic Natural Mineral Water (국내 먹는샘물 원수 중 바륨(Ba)의 수질 특성에 관한 연구)

  • Lee, Leenae;Ahn, Kyunghee;Yang, Mihee;Choi, Incheol;Chung, Hyenmi;Lee, Wonseok;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.416-423
    • /
    • 2017
  • The subject samples include 150 and 170 samples collected from intake holes in the former and latter half of 2015, respectively. They were analyzed with ICP-MS. The average concentration of detected barium was $10.54{\mu}g/L$ ($0.23{\sim}168.22{\mu}g/L$) and $8.21{\mu}g/L$ ($0{\sim}255.65{\mu}g/L$) for the former and latter halves of 2015, respectively. The concentration distribution was the highest for the precambrian era at $19.07{\mu}g/L$ and the lowest Cenozoic era at $4.92{\mu}g/L$. The average value for sedimentary, metamorphic, and igneous rocks was $7.84{\mu}g/L$, $20.84{\mu}g/L$, and $9.47{\mu}g/L$, respectively, which indicates that it was the highest for metamorphic rocks. The study also analyzed correlations between barium and other minerals and found that magnesium recorded 0.44 and 0.71 for the former and latter half of 2015, respectively. As for barium concentration according to depth, it was relatively low in shallow groundwater (under 200 m) with its average concentration at $14.33{\mu}g/L$ and $14.71{\mu}g/L$ for the former and latter half of 2015, respectively. It was $8.53{\mu}g/L$ and $4.04{\mu}g/L$ in deep groundwater (over 200 m) for the two periods, respectively, The risk assessment results show that its average risk was HQ 0.00139 and HQ 0.00163 for the former and latter half of 2015, respectively, being considerably lower than "1", which suggests that barium poses few possibilities of consumption risk.

Skarnization and Fe Mineralization at the Western Orebody in the Manjang Deposit, Goesan (만장광상 서부광체의 철스카른화 작용 및 생성환경)

  • Lim, Euddeum;Yoo, Bongchul;Shin, Dongbok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.141-153
    • /
    • 2016
  • The Manjang deposit is emplaced in Hwajeonri formation comprising limestone that is interbeded with slate and phyllite in the central Okcheon Group. It consists of the Main and the Central orebody of Cu-bearing hydrothermal vein deposit and the Western orebody of iron skarn deposit. Based on coexisting mineral assemblage the skarnization can be divided into prograde skarnization (stage I : clinopyroxene ${\pm}$ magnetite ${\pm}$ quartz, stage II : garnet + clinopyroxene ${\pm}$ magnetite ${\pm}$ quartz) and retrograde hydrothermal alteration (stage III: magnetite + amphibole + quartz ${\pm}$ garnet ${\pm}$ clinopyroxene ${\pm}$ chlorite ${\pm}$ epidote ${\pm}$ fluorite ${\pm}$ calcite, stage IV: fluorite ${\pm}$ pyrrhotite ${\pm}$ chalcopyrite ${\pm}$ amphibole ${\pm}$ quartz ${\pm}$ calcite). Diopside is abundant in stage I, and hedenbergite was produced in stage II and III. Garnet compositions change from grandite to andradite, which suggests a redox transition from relatively reduced to oxidized condition during the skarn formation. Magnetite in stage I and II has relatively constant Fe contents, while in the stage III it has increased Si and Ca concentrations. This variation could indicate that magnetite was more strongly affected by host rocks during the retrograde stage. Sulfur isotope compositions of pyrrhotite and chalcopyrite produced in stage IV are within the range of + 5.9~6.9 ‰, corresponding to igneous origin, but slightly high sulfur isotope values could be attributed to an interaction with host rocks, limestone.

Gold Mineralization of the Sepola District in Mali, Africa: Occurrence Characteristics of Gold and Fluid Inclusion Study (아프리카 말리 세폴라 지역의 금광화작용:금의 산출특성 및 유체포유물연구)

  • Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.167-175
    • /
    • 2009
  • The geology of Sepola district in Mali is consisted of Birrimian group with metasedimentary rocks of lower Proterozoic and volcanoclastics, and later intrusive igneous rocks. Ore diposit in this district has the characteristics of vein- and disseminated-type gold deposit which was formed by infilling the secondary fracture zones related to the large-scale fault zone of NW direction within Birrimian group. It is confirmed as promising that Barani district has the gold grade of 0.53${\sim}$9.21 g/t with the extension of 1.3 km and width of 1 to 20.1 m. The ore mineralogy is simple with electrum, pyrite and galena. Fineness of gold grain ranges from 848 to 915(average 891) indicating mesothermal to hypothermal environment. Fluid inclusions are classified as liquid-rich type I. gas-rich type II and liquid-$CO_2$ bearing type III. Primary and pseudosecondary inclusions homogenize from 236 to 393$^{\circ}C$ with salinity of 0.0 to 8.6 wt% NaCl. Secondary inclusions homogenize from 103 to 184$^{\circ}C$ with salinity of 0.7 to 8.6 wt.%. From the relationship between homogeniztion temperature and salinity, it may be thought that auriferous fluid experienced dilution and cooling through inflow of meteoric water after fluid unmixing derived from pressure decrease in the temperature range of 400 to 250$^{\circ}C$. From the massive occurrence of quartz vein, simple mineralogy with paucity of sulfide, and presence of liquid-$CO_2$ bearing with high homogenization temperature, it is thought that gold mineralization in Sepola district correspods to the mesothermal to hypothermal ore deposit.

Geology and Mineral Resources of the Ogcheon Zone: Mineralization in the Pyeongchang-Jucheon Area, Kangwon-Do, Korea (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~주천지역(酒泉地域)에 있어서의 광화작용(鑛化作用)-)

  • Yun, Suckew;So, Chil Sop;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 1986
  • A group of 16 $Zn+Pb{\pm}Ag$ deposits distributed in the Pyeongchang-Jucheon area, Kangwon-do, South Korea, were semi-regionally investigated. These deposits are contact metasomatic and/or hydrothermal replacement types hosted in the carbonate-dominated Cambrian Machari Formation and Ordovician Ibtanri Formation, and also in the carbonate interbeds of the Precambrian argillic metasediments. Comparing some key aspects of the individual deposits, it is found that the ore deposits hosted in the Machari and Ibtanri Formations are mostly of steeply-dipping chimneys with or without skarn minerals and are rich in Ag and Pb>Zn in metal grade whereas those occuring in the carbonate interbeds of the Precambrian argillic metasediments are gently-dipping conformable lenticular orebodies mostly with skarn minerals and are generally poor in Ag and Zn>Pb. The skarn mineralization in the area appears to have occurred during the lower Cretaceous (118.7Ma) to mid-Cretaceous (107.8Ma) time assumed from the K-Ar dates of the Dowon and Pyeongchang granites which are closely associated with the skarn ore deposits. The Rb/Ba/Sr ratios of these granites indicate that they are of strongly differentiated anomalous granites, and the Nb vs. Y and Rb vs. Y+Nb plots fall on the field of volcanic arc setting. The contact aureoles are zoned, giving the sequence in order of increasing distance from igneous contact: garnet-wollastonite, granet-wollastonite-clinopyroxene and garnet-clinopyroxene in such as the Pyeongchang and Yeonwol 114 areas. Electron microprobe analyses reveal that garnets and clinopyroxenes are generally low in Fe and Mn. Garnets are grossular to intermediate grandite except for those from the Ogryong exoskarn which are richer in andradite, pyrope and spessartine fractions. This indicates that the oxidation state of skarn-forming environment at Ogryong was higher than at the other deposits. Clinopyroxenes are mostly salitic except for those from the Ogryong exoskarn which involve considerable amounts of hedenbergite and johansenite fractions. The ${\delta}^{18}O$ value of Jurassic biotite granite at Ogryong is higher (+10.21‰) than that of Cretaceous one at Chodun (+8.41‰). The ${\delta}^{13}C$ values of carbonate rocks range from -0.89‰ to 0.68‰ and the ${\delta}^{18}O$ values range from +11.91‰ to + 19.34‰ indicating that these carbonate rocks are of marine origin. However, the ${\delta}^{13}C$ values of skarn calcite and vein calcite are -4.80‰ and -12.92‰, and the ${\delta}^{18}O$ values are +5.56‰ and +10.32‰, respectively, indicating that these calcites are of hydrothermal origin. The ${\delta}^{34}S$ values of sulfide minerals range from +4.4‰ to +8.7‰ suggesting that the sulfurs are of magmatic origin.

  • PDF

Oxygen and Sulfur Isotope Composition, and Genesis of Some Pyrophyllite Deposits Distributed in the Kyeongnam and Cheonnam Provinces (경남(慶南) 및 전남(全南) 일부(一部) 납석광상(蠟石鑛床)의 산소(酸素)-황(黃) 동위원소조성(同位元素組成)과 광상성인(鑛床成因))

  • Chon, Hyo Taek;Cheong, Young Wook;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.24 no.2
    • /
    • pp.97-105
    • /
    • 1991
  • Oxygen and sulfur isotope composition of pyrophyllite and pyrite from six pyrophyllite deposits in the Yangsan-Milyang areas (the Cheonbulsan, Dumyong, Dongrae, Youkwang, Sungjin and Milyang mines), and five deposits in the Whasoon-Dado-Haenam areas (the Byuksong, Songseok, Dado, Bugock and Nowha mines) were measured. Pyrophyllite ores both from the Yangsan-Milyang areas and the Dado-Haenam areas are composed mainly of high alumina minerals such as pyrophyllite, sericite and kaolinite. Most of altered rocks show diagnostic chacteristics of bleaching effect. Major minerals of the Songseok ore deposit in the Whasoon area are pyrophyllite, and diaspore with minor amounts of kaolinite and quartz. The Byuksong ores from the Whasoon area were composed mainly of andalusite, kaolinite, pyrophyllite and mica with small amounts of chloritoid, quartz and carbonaceous matter. The Byuksong and Songseok ores show metamorphic textures such as porphyroblastic, and pressure solution textures, and have low whiteness values, The ${\delta}^{18}O$ values of pyrophyllite from the Cheonbulsan and Dumyong mines in the Yangsan area, and the Dado and Nowha mines in the Dado-Haenam areas were in the range of 0.23~5.36%,. The relatively low 8 180 values provide conclusive evidence for hydrothermal activity in these deposits. The ${\delta}^{18}O$ values of pvrophvllite from the Songseok mine in the Whasoon area were measured as 6.70-8.13%, and these higher ${\delta}^{18}O$ values suggest that the Songseok ore deposit have been probably subjected to metamorphism. ${\delta}^{34}$S(pyrito) values from the Cheonbulsan, Dumyong, Youkwang, Dongrae, Sungjin and Milyang deposits in the Yangsan-Milyang areas, and the Dado pyrophyllite deposits in the Dado area range from -5.8 to 2.7%, which means that the pyrite sulfur could be of igneous origin. ${\delta}^{34}$S(pyrito) from the Nohwa mine in the Haenam area is, however, measured as -12.4%" implying the contamination of sulfur derived from the sedimentary country rocks. All of the studied high alumina deposits in the Yangsan-Milyang areas and the Dado-Haenam areas were hydrothermal in origin, whereas the Byuksong and Songseok ore deposits in the Whasoon area were probably of metamorphic origin.

  • PDF

Differentiation Trend of Rare Earth Elements of the Skaergaard Intrusion (Skaergaard 암체의 희토류의 분화경향)

  • Yun D. Jang
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.617-625
    • /
    • 2001
  • The Skaergaard intrusion is widely considered a type example of a strongly fractionated, layered intrusion that has undergone extensive in situ igneous differentiation. The Intrusion, therefore, should be a good locality for modeling trace element vriation in a closed system. Previous studios (Haskin and Haskin, 1968; Faster et al., 1974), however, have suggested thats the rare earth elements in whole rocks and mineeral separates from the Intrusion did not fellow the expected trend for closed system crystatllization. Trace element modeling using published distribution coefficients, modal abundances of the coexisting minerals, and the concentration of trace elements In whole rocks and mineral separates from the Skaergaard Intrusion, reveals that the rare earth elements were significantly Influenced by the crystallization of abundant apatite in the Layered Series suring the final stages of crystallization. The results of trace element modeling also suggcsts that apatite, which appears sporadically in the UBS, is not a primary liquidus phase in these samples as previously suggested (Naslund, 1984) but an interstitial phase that (lid not directly effect trace element abundances In the evolving magma As the Skaergaard magma coaled convection, or convected as small Isolated cells during the final stages of differentiation, an elebated $P_{H2O}$ Induced by accumulation of volatile elements near the roof of the magma chamber ingibited or delayed the precipitation of primary apatite in the UBS If the Skaergaard differentiation Is modeler assuming primary apatite crystallization In the upper par of the LS where abundant modal apatite is present, and only late stage crystallization of apatite In the UBS where apatite Is less abundant, rare earth elements abundances follow a closed system variation trend. These results rule but any differentiation model for the Skaergaard Intrusion that Includesvolumetrically significant injections or discharges of magma Into or out of the chamber during the final 20% of the crystallization history.

  • PDF