• Title/Summary/Keyword: igneous Activity

Search Result 69, Processing Time 0.025 seconds

Aspects of Tectonics and Volcanism Recorded in Cretaceous Medial Kyongsang Basin, SE Korea (경상분지 중앙부의 구조발달사외 화산활동사)

  • Chang, Ki-Hong;Park, Sun-Ok
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.143-151
    • /
    • 1997
  • The history of the Palgongsan Fault comprises the growth-fault, the dormant and the strike-slip phases. Dissecting the Palgongsan Granite, the Palgongsan Strike-slip Fault, which is the product of the final phase, sinistrally offset about 5.5 km as shown in the dislocation of the Hasandong Formation. Faulting, sedimentation and igneous activity were inter-related in the early phases of the Palgongsan Fault. Some other faults such as the Dansan Pond Fault and the Hayang Fault have also been discovered, and their some stratigraphic implications and the ages of faulting are discussed. The anomalous development of the Jindong Formation in the study area and the related stratigraphic problems are discussed. It has been confirmed that the Konchonri Formation deposited over the Chaeyaksan Volcanic Formation in spite of the recent doubts on their such stratigraphic relation. The chronological sequence of the volcanisms of the Kyongsang Basin has been summarized.

  • PDF

Geochemical and Geochronological Studies on Metaigneous Rocks in the Gyemyeongsan Formation, Northwestern Okcheon Metamorphic Belt and their Tectonic Implication (옥천변성대 북서부 계명산층 내 변성화성암류의 지구화학 및 지구연대학적 연구와 그 지구조적 의의)

  • 박종길;김성원;오창환;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.155-169
    • /
    • 2003
  • In the northwest Okcheon metamorphic belt, the metaigneous rocks in the Gyemyeongsan Formation have wider chemical ranges for major, trace and REE elements compared with metaigneous rocks in the Munjuri Formation and do not represent bimodal igneous activity which is characteristic for a continental rifting. The metaigneous rocks in the Munjuri Formation are regarded as products of single magmatic evolution, whereas those in the Gyemyeongsan Formation may be formed through multiple magmatic episodes. The felsic metavolcanic rocks in the Gyemyeongsan Formation show weaker Eu negative anomalies compared with those in the Munjuri Formation but those in both formations show similar degrees of enrichment from LREE to HREE. The metabasites in the Munjuri Formation do not show Eu anomalies but those in the Gyemyeongsan Formation show both positive and negative Eu anomalies(0.59

Block Tectonics of The Taebaegsan Basin and En Echelon Sedimentary Wedges of The Yeonhwa-Ulchin District, Mideastern South Korea

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.11 no.4
    • /
    • pp.127-141
    • /
    • 1978
  • The major structures characteristic of the Taebaegsan sedimentary basin were regionally analyzed with special reference to its southeastern extension to the Yeonhwa-Ulchin district of economic interest in zinc-lead mineralization. The basin geometry, basement setting, sedimentary components, and the characteristics of deformation and igneous activity of the Taebaegsan basin differ basically from those of the adjacent mobile belt of the Ogcheon geosyncline, although the latter affected the basin's western side considerably. The subrectangular shape of the Taebaegsan basin reflects the checkered pattern of basement-block arrangement, and the carbonate-dominated lithologic components of the basin-fill indicate a cratonic depositional setting, which is comparable to some of the North American mid-continental craton. The Taebaegsan basin, however, has somewhat been less stable than the North American megacraton that is reflected in the former's thicker sedimentary fill and steeper faults of later deformation, showing a tendency to increase in thickness close to the basement-block boundaries, which may indicate contacts of possibly detached cratonic blocks of Precambrian age; these weak zones of block boundaries have been the loci of repeated sedimentation, deformation and related igneous intrusions. A series of downthrown or uplifted tilted blocks, in which the Cambro-Ordovician sedimentary wedges and the late Cretaceous to early Tertiary igneous intrusives are involved, occurs intermittently across the Yeonhwa-Ulchin district in a noticeable pattern of en echelon type. These sedimentary wedges are correlated to the Cambro-Ordovician section of the Hambaeg syncline to the west in stratigraphy and lithology, and are considered to have resulted from the northeastern and/or northwestern cross-faulting of the pre-existing syncline belt of easterly trend, extended from the main portion of the Hambaeg syncline. These structural junctions (or intersections) of the earlier syncline belt and the later cross-faults have been acted as a guide to ascending igneous materials and hydrothermal ore-forming fluids to form a zone of zinc-lead skarn deposits across the Yeonhwa-Ulchin district showing a stepwise recurrence of these deposits toward the east.

  • PDF

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Mineralogy and Geochemistry of the Ogkye Gold Deposits, Gangwondo Province (강원도 옥계 금광상에 관한 광물학적·지화학적 연구)

  • Choi, Seon-Gyu;Choi, Sang-Hoon;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • Gold mineralization of the Ogkye gold mine was deposited mainly in quartz veins up to 150 cm wide which occupy fissures in Cambrian Pungchon limestone. Ore minerals are relatively simple as follows: pyrite, arsenopyrite, pyrrhotite, sphalerite, electrum and galena. On the basis of the Ag/Au ratio on ore grades, mode of occurrence and assoicated mineral assemblages, the Ogkye gold deposit can be classified as pyrite-type gold deposit (Group IIB). Fluid inclusion data indicate that ore minerals were deposited between $400^{\circ}$and $230^{\circ}C$ from relatively dilute fluids (0.2 to 7.3 wt.% eq. NaCl) containing $CO_2$. The ore mineralization resulted from a complex history of $CO_2$ effervescence and local concomitant boiling coupled with cooling and dilution of ore fluids. Gold deposition was likely a result of decrease of sulfur activity caused by sulfide deposition and/or $H_2S$ loss accompanying fluid unmixing. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=3.5{\sim}5.9$‰) are consistent with ${\delta}^{34}S_{H_2S}$ value of 4.8 to 6.1‰, suggesting mainly an igneous source of sulfur partially mixed with wall-rock sulfur.

  • PDF

Geology of Nogsan National Industrial Engineering Estate (녹산국가공단 조성지 일대의 토목 지질)

  • 안명석;김종대
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2000
  • The geology of Nogsan industrial estate area, Pusan, Korea consists mainly of andesitic rocks, rhyolitic rocks and hornblende granite. They are then intruded by basic and acidic dikes. All of the igneous activities in this area are in Cretaceous time, that is the lower part of Silla group in Gyoungsang basin. Andesitic volcanic rocks are distributed in two separate basines: Saengok basin and Doodong basin. Although both basines contain andesite and andesitic breccia(Kab), younger andesitic activity was more active to the western Doodong basin giving very little influence on the eastern Saengok basin. Sediments in the area are quarternaly alluvium and colluvium. Alluvium is very thick and consists mainly of silt and clay deposited as delta deposits at the mouth of Nakdong river. Colluvium in the area is short distributary channel deposits. The area is largely filled with socks and sediments to build industrial estates especially on the delta deposits at Shinhodong area and on the shoreline mud bed between Yongwondong and Shinhodong. A careful investigation to avoid the possibility of a large scale mud flow is suggested because it could be trigered by many reason such as an earthquake or a flood on the land where a heavily loaded salt-water may soaked into the muddy bed lying on the granitic basement gently dipping toward the ocean. Althouth the area is in the Yangsan fault zone no ground evidence of fault can be seen despite the RESTEC sattlite image gives excelent traces of linearments in the area.

  • PDF

Geochemistry of cordierite-bearing motasedimentary rocks, northern Yeongnam Massif: implications for provenance and tectonic setting

  • Kim, Jeongmin;Moonsup Cho
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • The metasedimentary rocks together with various granitoids are the main constituents in Taebaeksan gneiss complex, northern Yeongnam Massif. Chemical compositions of sedimentary rocks may reflect the nature of the provenance and could be crucial for understanding the evolution of early continental crust. Previous workers have suggested that the provenance and tectonic studies based on the geochemistry of sediments are applicable to the Precambrian samples. In this study we analyzed the major, trace and REE elements of metasedimentary rocks to understand their provenance and tectonic setting during sedimentation. The overall geochemical characteristics of metasedimentary rocks are similar to those of average shale of the post-Archean. Major element chemistry indicates mature and sorted nature of the sediments. The degree of weathering in the source rocks the is not uniform, as inferred from a large scatter in chemical indices of weathering (CIW). The immobile trace elements such as Th, Sc, and REE can be used to discriminate various sedimentary processes. The Th/sc ratios (0.9 - 4.4) are larger than those of the upper crust and average shale, suggesting that the felsic source predominates. The contents of Ni and Cr and the variations in the ratio of compatible to incompatible elements are similar to the average post-Archean shale. Uniform chondrite-normalized REE pattern with the LREE enrichment (LaN/SmN = 4.9 ${\pm}$ 0.4) and slight negative Eu anomalies (Eu/Eu$\^$*/ = 0.7 ${\pm}$ 0.1) also support this observation. The presence of negative Eu anomaly indicates that intracrustal igneous processes involving plagioclase separation have affected the provenance rocks. The LREE enrichment implies the major role of felsic rocks in source rocks. The eNd (1.9 Ga) values of metasediment rocks vary from 9.4 to 6.7, corresponding to TDM of 2.9 - 2.7 Ga. On the other hand, the 147Sm/144Nd ratios are 0.1079 - 0.1101, corresponding to typical tettigenous sediments. The geochemical features of metasedimentary rocks such as high abundances of large ion lithophile elements, high ratios of Th/Sc and La/Sm, commonly high Th/U ratios, negative Eu anomalies, and negative eNd, suggest a provenance consisting virtually entirely of recycled upper continental crust in passive margin environment. Tectonic discrimination diagrams based upon major element compositions also support this suggestion. In conjunction with igneous activity and metamorphism in the convergent margin setting at 1.8 - 1. 9 Ga, the transition from passive margin to active margin characterize the Paleoproterozoic crustal evolution in northern Yeongnam Massif.

  • PDF

Genesis of the REE Ore Deposits, Chungju District, Korea: Occurrence Features and Geochemical Characteristics (충주지역 희토류 광상의 성인: 산출상태와 지화학적 특성)

  • Park, Maeng-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.599-612
    • /
    • 1995
  • Some REE ore deposits are located in the middle part the of Korean peninsula. Geotectonically, the REE ore deposits situated on the Kyemyeongsan Formation of northern margin of the Okcheon geosynclinal belt and in the transitional zone between Kyeonggi massif and the Okcheon belt, with a deep-seated fracture separating the two tectonic units. The Kyemyeongsan Formation are different in lithology and metamorphic grade from the Gyeonggi massif and the Okcheon super group. The sequence of Kyemyeongsan Formation is dominantly composed of acidic metavolcanic and volcaniclastic rocks associated with alkaline igneous rocks which are related to volcano-plutonism. The REE ore deposits contain mainly Ce-La, Ta-Nb, Y, Y-Nd and Nd-Th group minerals. More than 15 RE and REE minerals have been found in the deposits, such as allanite, fergusonite, thorite bestnaesite, euxenite, polyclase, monazite, columbite, (Nb)-rutile, okanoganite, sphene, zircon, illmenite and some other unknown minerals. According to the characteristics of the mineral association, the REE ore deposits may be divided into 4 ore types; Zircon-REE, allanite-REE, feldspar-REE and fluorite-REE type. The Sm-Nd isochron age of the REE ore is 330 Ma, and the Sm-Nd model age is 1.11 Ga with ${\varepsilon}_{Nd(t)}$ being - 2.9. This data suggest that the REE ore deposit was formed in the early Carboniferous, and the ore-forming material came from the mantle. The REE ores show distinct light REE enrichment with strong negative Eu anomaly. The REE patterns of schistose rocks from Kyemyeongsan Formation are similar to felsic volcanics from rifts or back arc basins in or near continental crust. The genesis of the REE ore deposit is quite complicated. Different geologic processes are displayed in the studied area; sedimentation, volcanic activity, metamorphism and hydrothermal replacement. Alkali granite has suffered extensive post-magmatic metasomatism of a high temperature to produce alkali metasomatites. Geochemical charateristics show that metasomatism of alkaline fluid was probably the dominant ore-forming process in Chungju district.

  • PDF

Characteristics on the Occurrence of Oxidized Copper at Suparaura, Peru: Preliminary Study (페루 수빠라우라 산화동 산출지의 특성: 예비연구)

  • Kim, Eui-Jun;Heo, Chul-Ho;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Geological survey on the occurrence of copper oxide in Suparaura area around Abancay in the south-central part of Peru had been carried out. Geology of the area is composed of granitoids such as granodiorite, tonalite and andesitic porphyry related to Tertiary igneous activity, Ferrobamba formation with Cretaceous limestone and sandstone in descending order. Red sandstone is widely distributed and emplaced with their attitude of $N70^{\circ}W$ strike and $60^{\circ}NE$ dip. Copper oxides were mineralized along the bedding plane of red sandstone with maximum width of 30 cm. Ore-body structure bounding red sandstone strata have different occurrence characteristics with generally known porphyry system in terms of alteration, mineral assemblage and occurrence mode. Therefore, it is thought to be stratiform sediment-hosted copper (SSC) deposits genetically corresponding to Mississippi-valley type from preliminary study.

Geochemical Study on Foliated Granites in the Damyang-Jinan area (담양(潭陽)-진안(鎭安)사이에 분포(分布)하는 엽리상화강암류(葉理狀花崗岩類)에 대(對)한 암석화학적(岩石化學的) 연구(硏究))

  • Kim, Cheong-Bin;Kim, Yong-Jun;Hong, Sei-Sun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.87-104
    • /
    • 1990
  • Foliated granites between Damyang and Jinan are subdivided into Daegang foliated granite, Foliated hornblende biotite granodiorite, Sunchang foliated granodiorite, Foliated two mica granite and Samori foliated granite by mineral and texture. From EPMA data of the foliated granites following results are achieved. Composition of plagioclase are correspond to andesine, oligoclase and albite in Foliated hornblende biotite granodiorite, Sunchang foliated granodiorite and other foliated granites, respectively. And amphiboles are calcic hornblende in Foliated hornblende biotite granodiorite, and riebeckite in Daegang foliated granite. In differentiation index(D. I.) and Larsen index(L. I.), Daegang foliated granite, Foliated two mica granite and Samori foliated granite which belong to granite are 83.12-95.54 and 25.86-29.05 and Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite of diorite to granodiorite are 54.99-78.54(D. I.) and 6.48-21.01(L. I.). Harker and AMF diagrams plotted from foliated granites show that the granites are product of calc alkali rock series orignated from co-magma. Characteristic foliation of foliated granites fromed by ductile deformation at deep zone of dextral strike slip fault. Foliated granites are considered as a series of differentiated product of Triassic Igneous activity of Songrim disturbance. According to REE, (La/Lu) and Eu/Sm, Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite are correspond to granodiorite, and other foliated granites are monzo-and syeno-granite. Foliated granites having 0.20-0.01 of Em/Sm ratio are plutons emplaced by the tectonic setting in continents and continental margin.

  • PDF