• Title/Summary/Keyword: idealized models

Search Result 102, Processing Time 0.021 seconds

Study of Buckling Evaluation for the connecting rod of the engine (엔진 커넥팅로드의 좌굴평가에 대한 연구)

  • 이문규;문희욱;이형일;이태수;신성원;장훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.677-680
    • /
    • 2004
  • This study investigates the buckling evaluation of connecting rods used in the diesel engine through finite element analysis. The Rankine formula, which is modified from classical Euler‘s formula, has been widely accepted in automotive industry to evaluate the buckling of connecting rods. Apparently, this formula is most suitable for the straight and idealized rod shape, and over-simplifies the geometric complexity associated with connecting rods. The subspace iteration method in FEA is used to predict the critical buckling stress of a connecting rod with certain slenderness ratio. To create models with various slenderness ratios for shank portion in the rod, the automatic meshing preprocessor was implemented. Results from FEA were verified by the experiments, in which the embedded strain gages measured for the connecting rod running at 4000rpm. The result indicates that the buckling prediction curve through FEA and experiment is effectively different from the curve of classical Rankine formula.

  • PDF

Direct Numerical Simulation of Turbulent Scalar Transport in a Channel with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.597-605
    • /
    • 2004
  • Turbulent temperature field in a channel subject to strong wall injection has been investigated via direct numerical simulation technique. These flows are pertinent to internal flows inside hybrid rocket motors. A simplified model problem where a regression process at the propellant surface is idealized by wall injection has been investigated to understand how the temperature field is modified. The effect of strong wall injection displaces thermal boundary layer away from the wall and this causes a sharp drop of friction temperature. Turbulent diffusivity and dissipation time scale for temperature field are found to show large variations in the streamwise direction under application of wall blowing. It is, thus, expected that more sophisticated turbulence models would be required to predict the disturbed temperature field accurately.

Application of Wavenumber-TD approach for time harmonic analysis of concrete arch dam-reservoir systems

  • Lotfi, Vahid;Zenz, Gerald
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.353-371
    • /
    • 2018
  • The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was formulated in the context of pure finite element programming in frequency domain. Later on, a variation of the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation (i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic excitation in stream direction. All results for various considered cases are compared against the exact response for models with different values of normalized reservoir length and reservoir base/sidewalls absorptive conditions.

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.

The Characteristic Analysis of Reluctance Motor by Excitation Mode (여자방식에 따른 리럭턴스 전동기의 특성해석)

  • Kim, Jong-Gyeum;Kim, Il-Jung;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.122-128
    • /
    • 2000
  • The SRM is a simple and robust machine which is finding applications over a wide power and speed range. To properly evaluate the motor performance, a reliable model design is required. This paper explains the various excitation mode and winding configuration to analyze the torque performance of SRM. A number of different idealized current excitation patterns are introduced, using unipolar, bipolar & square excitation, and the output torques produced by the various winding configurations are compared. The electromagnetic torque of the SRM was calculated from the rate of change of co-energy with respect to angular displacement. The simulation result shows that 3-phase square excitation mode models have revealed higher torque performance.

  • PDF

Numerical Simulation of Colliding Behaviors of Ice Sheet Considering the Viscous Material Properties (점성변형 특성을 고려한 빙판의 충돌거동에 대한 수치해석)

  • 노인식;신병천
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.162-172
    • /
    • 1993
  • In the present paper, the overall state of the arts of ice mechanics which is the most typical research topic of the artic engineering field was studied. And also, ice loads genrated by ice-structure interaction were estimated using numerical approach. The effects of viscous property of ice sheets to the ice load were investigated. The time dependent deformation behaviors of ice was modeled by visco-plastic problem using the finite element formalism. Constitutive model representing the material properties of ice was idealized by comblned rheological model with Maxwell and Voigt models. Numerical calculations for the bending and crushing behavior of ice sheet which are the most typical interaction modes between ice sheets and structures were carried out. The time dependent viscous behaviors of ice sheets interaction forces acting on structures were analyzed and the results were studied in detail.

  • PDF

Star Formation of Merging Disk Galaxies with AGN Feedback Effects

  • Park, Jongwon;Smith, Rory;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2017
  • Using numerical hydrodynamics code RAMSES, we perform idealized galaxy merger simulations and study the star formation of merging disk galaxies. In our simulations, we consider the active galactic nucleus (AGN) feedback effect. In order to investigate the star formation influenced by AGN, we run ~60 simulations with various initial conditions. We confirm that star formation is more efficiently suppressed in merging galaxies than in isolated galaxies. In the mergers, AGN effect is more significant when the masses of two galaxies are similar. Furthermore, we find that bulge fraction does not affect the star formation when the AGN effect is considered. We discuss the implications on semi-analytic galaxy formation models and the limitation of the current AGN prescriptions.

  • PDF

A Study for Rationalization of Lifting Lug Design of Ship Block (선박블록 탑재용 러그구조의 설계합리화를 위한 연구)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

Vibration Reaponse Analysis of frames with energy absober installed in Beams (보 제진 프레임의 진동응답해석)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.159-166
    • /
    • 1997
  • The purpose of this thesis is to derive a theoretical model of the hysteretic resistance of the visco-elastic damper based on test results of harmonic excitation and to investigate of the basis of theory and experiment the effect of vibration control and response characteristics of portal frames degree vibration systems provided with the damper. The behaviour of a visco-elastic degree under dynamic loading is idealized by a model of the theory of visco-elasticity, i.e. a four-parameter model formed as a parallel combination of Maxwell fluid and Kelvin-Voigh models and its constitutive equation is derived. The model parameters are determined for a tested damper from the datas of harmonic excitation tests. The theoretical model of the damper is incorporated in equation fo motion of single degree of freedom. A computer program for solving the equation is written using Runge-kuttas's numerical integration scheme. Using this analysis program test cases of the earthquake excitation are simulated and the results of the simulation are the results of the simulation are the results of the simulation are compared with the test results.

  • PDF

A Study on Medial Surface Extraction from Point Samples on 3D Closed Surfaces in Shell Shapes (셸 형상의 3차원 폐곡면상에서 추출된 점데이터군으로부터 중립곡면 계산에 관한 연구)

  • Woo, Hyuck-Je
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • In this study, new medial surface calculation methods using Voronoi diagrams are investigated for the point samples extracted on closed surface models. The medial surface is defined by the closure of all points having more than one closest point on the shape boundary. It is a one of essential geometric information in 3D and can be used in many areas such as 3D shape analysis, dimension reduction, freeform shape deformation, image processing, computer vision, FEM analysis, etc. In industrial parts, the idealized solid parts and shell shapes including sharp edges and vertices are frequently used. Other medial surface extraction methods using Voronoi diagram have inherent separation and branch problems, so that they are not appropriate to the sharp edged objects and have difficulties to be applied to industrial parts. In addition, the branched surfaces on sharp edges in shell shapes should be eliminated to obtain representative medial shapes. In order to avoid separation and branch problems, the new approach by analyzing the shapes and specially sampling on surfaces has been developed.