• Title/Summary/Keyword: ice melting

Search Result 108, Processing Time 0.025 seconds

A study on northern sea route navigation using ship handling simulation

  • Kim, Won Ouk;Youn, Dae Gwun;Lee, Young Chan;Han, Won Heui;Kim, Jong Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1044-1048
    • /
    • 2015
  • Recently, the viability of the Northern Sea Route has been receiving a remarkable amount of attention. Owing to global warming, glaciers in the Arctic Ocean have been melting rapidly, which has opened up navigation routes for ships with commercial as well as research purposes. At present, vessels can be economically operated along the Northern Sea Route four months of the year. However, studies have shown that the economical operating time may increase to six months by 2020 and year-round by 2030. Even though the conditions of the Northern Sea Route are extreme, the main reason for its use is that the route is shorter than the existing route using the Suez Canal, which provides an economic benefit. In addition, 25% of the world's oil reserves and 30% of its natural gas are stored in the coastal areas of the East Siberian Arctic region. Many factors are leading to the expectation of commercial navigation using the Northern Sea Route in the near future. To satisfy future demand, the International Maritime Organization established the Polar Code in order to ensure navigation safety in polar waters; this is expected to enter into force on January 1, 2017. According to the code, a ship needs to reduce its speed and analyze the ice for safe operation before entering into it. It is necessary to enter an ice field at a right angle to break the ice safely and efficiently. This study examined the operation along the course for safe navigation of the passage under several conditions. The results will provide guidelines for traffic officers who will operate ships in the Arctic Ocean.

Quality Characteristics of Ice Creams using Tarak (타락을 이용한 아이스크림류의 품질 특성)

  • Ko, Seong-Hee;Han, Young-Sook;Yoon, Hyun-Geun;Jang, Sung-Sik;Myoung, Kil-Sun;Kim, Soo-A;Shim, Jae-Hun;Park, Seon-Yeong;Lee, Hye-Jin;Lee, Kyung-Yeoun
    • Culinary science and hospitality research
    • /
    • v.20 no.6
    • /
    • pp.91-101
    • /
    • 2014
  • This study examines ice cream products with higher preference as dessert food using Tarak which is Korean traditional fermented milk (sherbet 1 kind, ice milk 2 kinds(IM-2, IM-4), ice cream 1 kind (IC-6)), and investigates the quality characteristics of each Tarak ice cream. For viscosity of the mix for Tarak ice creams, sherbet showed the lowest, and IC-6 showed the highest, significantly. For overrun, at 10 minutes, IC-6 with high milk fat content showed a higher value, and at the final 30 minutes, there was no significant difference among all samples. For melting point, IC-6 showed the highest and sherbet showed the lowest. For number of lactic acid bacteria, sherbet showed 7.32 Log CFU/g and IM-2, IM-4 and IM-6 showed 8.35~8.49 Log CFU/g, not showing significant difference. For sensory test of Tarak ice creams, IC-6 showed milk flavor highest, 4.10, and for sourness, sherbet showed 4.20 and IM-2 showed 4.10. For sweet taste, IC-6 showed the highest 5.05, and for bitter, IC-6 showed the lowest, 1.65. For the degree of creaminess, IC-6 was assessed significantly higher as 4.60 and body sense was also assessed higher as 5.05. For acceptance of appearance, taste, flavor and texture, IC-6 was assessed significantly higher than the other samples and for overall acceptability, IC-6 was assessed the highest at 5.15, sherbet showed 3.75, IM-2 showed 3.05 and IM-4 showed 2.50. This suggests that for Tarak ice creams, sensory preference of ice creams with high milk fat content or sherbet with non milk fat content is high.

Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images (Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측)

  • Lee, Eu-Ru;Lee, Ha-Seong;Park, Sun-Cheon;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1691-1707
    • /
    • 2022
  • Cheonji Lake, the caldera of Baekdu Mountain, located on the border of the Korean Peninsula and China, alternates between melting and freezing seasonally. There is a magma chamber beneath Cheonji, and variations in the magma chamber cause volcanic antecedents such as changes in the temperature and water pressure of hot spring water. Consequently, there is an abnormal region in Cheonji where ice melts quicker than in other areas, freezes late even during the freezing period, and has a high-temperature water surface. The abnormal area is a discharge region for hot spring water, and its ice gradient may be used to monitor volcanic activity. However, due to geographical, political and spatial issues, periodic observation of abnormal regions of Cheonji is limited. In this study, the degree of ice change in the optimal region was quantified using a Landsat -5/-7/-8 optical satellite image and a Modified U-Net regression model. From January 22, 1985 to December 8, 2020, the Visible and Near Infrared (VNIR) band of 83 Landsat images including anomalous regions was utilized. Using the relative spectral reflectance of water and ice in the VNIR band, unique data were generated for quantitative ice variability monitoring. To preserve as much information as possible from the visible and near-infrared bands, ice gradient was noticed by applying it to U-Net with two encoders, achieving good prediction accuracy with a Root Mean Square Error (RMSE) of 140 and a correlation value of 0.9968. Since the ice change value can be seen with high precision from Landsat images using Modified U-Net in the future may be utilized as one of the methods to monitor Baekdu Mountain's volcanic activity, and a more specific volcano monitoring system can be built.

Numerical Analysis of Icing and Condensation Mechanism sing Enthalpy Method (엔탈피방법을 이용한 결빙 및 응축 메커니즘 해석)

  • Kim, S.H.;Heo, M.W.;Park, W.G.;Jung, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2901-2906
    • /
    • 2007
  • A solver for icing and condensation of water has been developed. The phase change process was solved by the enthalpy method. For the code validation, the temperature and the phase change from water to ice of the driven cavity were calculated. Also, the melting process of the frost on the windshield glass of an automobile has been simulated. The calculation showed a good agreement with analytical solution and other numerical results. Using the present validated code, the condensation of water vapor has been first tried. The computed results provided some physical features of condensation phenomena even though experimental data and other numerical data were not available. For future work, it is recommended to throughly investigate the effects of boundary conditions on the solution.

  • PDF

A Study on the Secondary School Students' Conceptions about the Changes of State of Water (물의 상태 변화에 대한 중, 고등학생의 개념 형성에 관한 연구)

  • Kook, Dong-Sik
    • Journal of The Korean Association For Science Education
    • /
    • v.8 no.1
    • /
    • pp.33-42
    • /
    • 1988
  • Secondary school students' conceptions about the phenomena of evaporating, condensing, boiling and melting of ice using a modified questionare-about-events method. The specific views at each grade level were also studied. The results of investigation were as following. 1) Students' understanding on the sciencific concepts and terms is superficial and nonscientific. 2) Even though upper grade students have exposed to a considerable science teaching, their views are similar to lower grade students. 3) Certain views on the change of state of water can change with the advanced science teaching. However, some nonscientific views are more popular with the older students than with the younger students.

  • PDF

Studies on thermal and swelling properties of Poly (NIPAM-co-2-HEA) based hydrogels

  • Shekhar, Suman;Mukherjee, M.;Sen, Akhil Kumar
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.269-284
    • /
    • 2012
  • Thermoresponsive hydrogels based on N-Isopropylacrylamide (NIPAM) and 2-Hydroxyethylacrylate (HEA) were prepared by free radical polymerization. The hydrogels were characterized by elemental (CHN) analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). DSC thermogram showed two endothermic transitions which are due to hydration of water present in different environments. One near $0^{\circ}C$ called melting transition of ice and was used to calculate the quantitative determination of the amounts of freezing and non freezing water. The other transition above the ambient temperature was due to the combination of hydrophobic hydration and hydrophilic hydration which changes with the copolymer compositions. Swelling and deswelling studies of the hydrogels were carried out using the aqueous media, salt and urea solutions. The experimental results from swelling studies revealed that copolymers have lower rates of swelling and deswelling than the homopolymer.

Stiffness change measurement for subgrade soils at freezing and thawing using impact resonance test (충격공진시험을 이용한 노상토의 동결.융해시 강성도 변화 측정)

  • Lee, Jae-Hoan;Kweon, Gi-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.686-691
    • /
    • 2009
  • Damage due to frost action in pavement structure system is creating either frost heave or stiffness-weakening of subgrade soil follow melting. The formation of ice lenses requires a frost-susceptible soil, freezing temperatures, and continuous water supply. Eliminating one of these conditions suffices to significantly reduce the intensity of frost action. It is important to know characteristics of subgrade soil in frost susceptibility or decide degree of freezing permission. Also, study on the stiffness variation of subgrade soil during freezing and thawing cycle is very important. In this study, Impact resonance test for subgrade soil at freezing and thawing confirms that is applied for.

  • PDF

Characterization of Black Carbon Collected from Candle Light and Automobile Exhaust Pipe

  • Cho, Seo-Rin;Cho, Han-Gook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.691-696
    • /
    • 2013
  • Black carbon contributes to global warming and melting of polar ice as well as causing respiratory diseases. However, it is also an inexpensive, easily available carbon nano material for elementary chemistry experiments. In this study, black carbon samples collected from candle light and automobile exhaust pipes have been investigated to examine their compositions and surface characteristics. The observed broad G and D bands and amorphous $sp^3$ band in their Raman spectra as well as the high intensity of the D (defect) band reveal that black carbon is principally made of amorphous graphite. The black carbon deposits in automobile exhaust pipes are apparently more amorphous, probably due to the shorter time allowed for formation of the carbonaceous matter. An exceptionally large water contact angle ($159.7^{\circ}$) is observed on black carbon, confirming its superhydrophobicity. The surface roughness evidently plays an important role for the contact angle much larger than that of crystalline graphite ($98.3^{\circ}$). According to the Sassie-Baxter equation, less than 1% the area actually in contact with the water drop.

Mulberry Low-Fat Ice Cream Supplemented with Synbiotic: Formulation, Phytochemical Composition, Nutritional Characteristics, and Sensory Properties

  • Kittisak Thampitak;Rattanaporn Pimisa;Pongsanat Pongcharoen;Suppasil Maneerat;Noraphat Hwanhlem
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.361-374
    • /
    • 2022
  • For this study, we designed and produced mulberry low-fat ice cream supplemented with synbiotics (MLF-ISS). The sensory characteristics and physical, chemical, and microbiological qualities of MLF-ISS were then determined. Mulberry juice inoculated with or without probiotic (Lactobacillus plantarum TISTR 926 and Saccharomyces boulardii CNCM I-745) was also tested at 37℃ for 24 h to determine probiotic growth rate, pH, total anthocyanin content (TAC), total phenolic content (TPC), and antioxidant activity (AA). Only the TAC of mulberry juice inoculated with S. boulardii CNCM I-745 increased considerably (p < 0.05) among these parameters. MLF-ISS was produced with varied mulberry fruit concentrations (0, 10, 20, 30, or 40%) (w/w). The MLF-ISS prepared with 30% mulberry fruit (w/w) (30-MLF-ISS) had a higher score in appearance, color, and sweetness (p < 0.05) when sensory qualities were measured using the 9-point hedonic scale method. In the CIE lab system (L*, a*, b*), the color values of 30-MLF-ISS were 27.80 ± 0.26, 12.99 ± 0.59, and 1.43 ± 0.05, respectively. The 30-MLF-ISS was also subjected to a proximate analysis. The melting rate of 30-MLF-ISS was 0.29 ± 0.03 g/min and the time it took for the first drop to fall was 37.00 ± 7.00 min. TAC, TPC, and AA of 30-MLF-ISS were observed to alter significantly (p < 0.05) during varied intervals of storage at - 18℃ (0, 30, and 60 days). The viability of probiotics in 30-MLF-ISS slightly decreased after storage at -18℃ for 8 weeks, but remained about 6 log CFU/g. During storage at -18℃ for 0 and 120 days, no pathogenic bacteria were detected in 30-MLF-ISS. These findings show that 30-MLF-ISS has nutritional and functional value, is free of foodborne pathogenic bacteria, is safe for consumers' health, and is suitable for application in the ice cream and related food industries.

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF