• 제목/요약/키워드: ice depth

검색결과 84건 처리시간 0.028초

여름철 Chukchi Borderland 부근 해빙 재료특성 계측 (A Measurement of Sea Ice Properties at Chukchi Borderland During the Summer)

  • 정성엽;최걸기
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.45-51
    • /
    • 2012
  • Sea ice properties have been considered a key indicator in the structural design criteria of icebreaking vessels and arctic offshore platforms to estimate design ice load and resistance for their safety management in Arctic Ocean. A measurement study of sea ice properties was conducted during July to August of 2011 with the Korean icebreaking research vessel "Araon" around Chukchi Borderland. The sea ice concentration appears to be rapidly decreasing during this cruise. Ice condition seems to be thick second-year ice and multi-year ice and then, a lot of melt ponds were observed in the surface of ice floe. Calculated flexural strength of sea ice was about 250~550kPa, ice thickness was roughly 1.3~3.0m. In this research we performed field experiment to measure ice temperature along the depth, thickness, density, salinity, brine volume ratio and crystal structure. Apparent conductivities derived with the electromagnetic induction instrument were compared to drill hole measurement results and accuracy of sea ice thickness estimation formula was discussed.

해수열원을 이용한 빙상경기장의 에너지절약 방안에 관한 연구 (Energy Saving Strategies for Ice Rink using Sea-Water Heat Source Cooling System)

  • 김삼열;박진영;박재홍
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2014
  • Ice Rink is energy intensive building type. Concern of energy saving from buildings is one of very important issues nowadays. New and renewable energy sources for buildings are especially important when we concern about energy supply for buildings. Among new and renewable energy sources, use of seawater for heating and cooling is an emerging issue for energy conscious building design. The options of energy use from sea water heat sources are using deep sea water for direct cooling with heat exchange facilities, and using surface layer water with heat pump systems. In this study, energy consumptions for an Ice Rink building are analyzed according to the heat sources of air-conditioning systems; existing system and sea water heat source system, in a coastal city, Kangnung. The location of the city Kangnung is good for using both deep sea water which is constant temperature throughout the year less than $2^{\circ}C$, and surface layer water which should be accompanied with heat pump systems. The result shows that using sea water from 200m and 30m under sea lever can save annual energy consumption about 33% of original system and about 10% of that using seawater from 0m depth. Annual energy consumption is similar between the systems with seawater from 200m and 30m. Although the amount of energy saving in summer of the system with 200m depth is higher than that with 30m depth, the requirement of energy in winter of the system with 200m depth is bigger than that with 30m depth.

빙산과의 충돌 시 충격 하중이 극지운항선박의 내빙 구조에 미치는 영향에 관한 연구 (A Study on the Effect of Ice Impact Forces on an Ice-Strengthened Polar Class Ship After a Collision with an Iceberg)

  • 김성혁;;석초;이창현
    • 해양환경안전학회지
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 2017
  • 본 연구는 LS-DYNA 971 을 이용하여 내빙 구조 선박과 빙산 모형 간의 충돌 시험을 수행 후 북극해 운항 선박의 내빙 능력을 분석하였다. 국제선급연합회(IACS)의 Unified Requirements for Polar ship(URI) 규정을 바탕으로 FEM 선박 모형에 내빙 구조를 적용하였으며, 빙산 모형에는 Elastic-perfect plastic 물성과 Tsai-Wu 항복 곡면을 적용하였다. 또한 실험 결과 비교를 위하여 내빙 구조를 갖추지 않은 일반선박 모형과의 충돌 시험도 수행하였다. 실험 결과 일반 구조 선박의 구형 선수에 빙산 모형에 의해 움푹 들어간 약 1.8 미터 깊이의 선체 손상이 발생하였으나, 내빙 구조 선박의 충돌에서는 약 1.0 미터 깊이의 선체 손상만이 발생하였다. 또한 일반 구조 선박과 충돌한 빙산모형은 원형의 상태를 거의 유지한 반면, 내빙 구조 선박과 충돌한 빙산 모형은 내빙 구조의 구형 선수에 의해 빙산이 일부 파괴되는 현상이 발견되었다.

가을철 빙권 조건을 활용한 겨울철 역학 계절 예측시스템의 개발 (Development of Dynamical Seasonal Prediction System for Northern Winter using the Cryospheric Condition of Late Autumn)

  • 심태현;정지훈;김백민;김성중;김현경
    • 대기
    • /
    • 제23권1호
    • /
    • pp.73-83
    • /
    • 2013
  • In recent several years, East Asia, Europe and North America have suffered successive cold winters and a number of historical records on the extreme weathers are replaced with new record-breaking cold events. As a possible explanation, several studies suggested that cryospheric conditions of Northern Hemisphere (NH), i.e. Arctic sea-ice and snow cover over northern part of major continents, are changing significantly and now play an active role for modulating midlatitude atmospheric circulation patterns that could bring cold winters for some regions in midlatitude. In this study, a dynamical seasonal prediction system for NH winter is newly developed using the snow depth initialization technique and statistically predicted sea-ice boundary condition. Since the snow depth shows largest variability in October, entire period of October has been utilized as a training period for the land surface initialization and model land surface during the period is continuously forced by the observed daily atmospheric conditions and snow depths. A simple persistent anomaly decaying toward an averaged sea-ice condition has been used for the statistical prediction of sea-ice boundary conditions. The constructed dynamical prediction system has been tested for winter 2012/13 starting at November 1 using 16 different initial conditions and the results are discussed. Implications and a future direction for further development are also described.

태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교 (Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean)

  • 강성호;김현철;하선용
    • Ocean and Polar Research
    • /
    • 제40권4호
    • /
    • pp.281-288
    • /
    • 2018
  • The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.

추코트와 보퍼트 해에서 계측된 해빙 두께와 건현과의 관계 (Relation Between Measured Sea Ice Thickness and Freeboard on Chukchi and Beaufort Seas)

  • 정성엽;최경식;조성락;강국진;이춘주
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.527-532
    • /
    • 2014
  • The thickness of Arctic sea ice is a particularly significant factor in Arctic shipping and other ice-related research areas such as scientific sea ice investigations and Arctic engineering. In this study, the relation between the measured sea ice thickness and freeboard on the Chukchi and Beaufort Seas during the 2010 and 2011 Arctic cruise of the icebreaking research vessel "Araon" were considered. An assumption of hydrostatic equilibrium was used to estimate the ice thickness as a function of the freeboard. Then, to examine the degree of error, a sensitivity analysis of the thickness estimation of the sea ice was conducted. The error in the density and depth of the snow and the error in the density of the seawater were subordinate parameters, but the density of the ice and the freeboard were the primary parameters in the error calculation. The presented relation formula showed fairly close agreement between the calculated and measured results at a freeboard of >0.24 m.

북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구 (Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic)

  • 한향선;이훈열
    • 대한원격탐사학회지
    • /
    • 제23권6호
    • /
    • pp.507-520
    • /
    • 2007
  • 인공위성 수동 마이크로파(passive microwave, PM) 센서는 1970년대부터 극지 해빙의 면적비(sea ice concentration, SIC)와 표면 온도(ice temperature), 적설 두께(snow depth) 등을 관찰하고 있다. 특히 SIC는 기후 및 환경 변화 관찰을 위한 1차 요소로 고려되는 등 다양한 연구 분야에서 중요한 역할을 하기 때문에 PM SIC의 지속적인 검증과 보정이 필요하다. 본 연구에서는 2005년 7-8월 북극해의 가장 자리를 촬영한 KOMPSAT-1 EOC 영상으로부터 SIC를 계산하였고, 이를 NASA Team(NT) 알고리즘으로 계산된 SSM/I SIC와 비교하였다. EOC와 SSM/I NT SIC는 서로 다른 해상도와 관측 시각을 가지며 북극의 여름철 해빙 분포지역의 가장자리에서 해빙의 시공간적인 변화가 크기 때문에, 해빙의 유형을 고려하지 않았을 경우 0.574의 낮은 상관성을 보였다. 해빙의 유형에 따른 SSM/I NT SIC를 검증하기 위하여 EOC 영상으로부터 정착빙, 부빙, 유빙으로 해빙 형태를 분류하였고, 각 유형 별로 EOC와 SSM/I NT SIC를 비교하였다. 정착빙의 면적비는 EOC와 SSM/I NT SIC 사이에서 평균 오차가 0.38%로 매우 유사한 값을 나타냈다. 이는 정착빙의 시공간적인 변화가 작기 때문이며, 표면에 쌓인 눈은 건조한 상태일 것으로 추정되었다. 부빙의 경우 NT 알고리즘에서 면적비가 과소평가되는 빙맥(ice ridge)과 new ice가 많이 관찰되었으며, 이로 인해 SSM/I NT SIC는 EOC보다 평균 19.63%작은 값을 나타냈다. 유빙 지역에서 SSM/I NT SIC는 EOC보다 평균 20.17% 큰 값을 가진다. 유빙은 부빙의 가장자리와 가까운 지역에 위치하기 때문에 SSM/I의 넓은 IFOV 내에 비교적 높은 SIC를 가지는 부빙이 포함되어 오차를 일으킬 수 있다. 또한 유빙표면에 쌓인 수분 함량이 높은 눈의 영향으로 SSM/I NT SIC가 과대 측정되었을 것으로 사료된다.

Surface Segregation of Hydroniums and Chlorides in a Thick Ice Film at Higher Temperatures

  • Lee, Du Hyeong;Bang, Jaehyeock;Kang, Heon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.263-263
    • /
    • 2013
  • This work examines the dynamic properties of ice surfaces in vacuum for the temperature range of 140~180 K, which extends over the onset temperatures for ice sublimation and the phase transition from amorphous to crystallization ice. In particular, the study focuses on the transport processes of excess protons and chloride ions in ice and their segregative behavior to the ice surface. These phenomena were studied by conducting experiments with a relatively thick (~100 BL) ice film constructed with a bottom $H_2O$ layer and an upper $D_2O$ layer, with excess hydronium and chloride ions trapped at the $H_2O$/$D_2O$ interface as they were generated by the ionization of hydrogen chloride. The migration of protons, chloride ions, and water molecules to the ice film surface and their H/D exchange reactions were measured as a function of temperature using the methods of low energy sputtering (LES) and Cs+ reactive ion scattering (RIS). Temperature programmed desorption (TPD) experiments monitored the desorption of water and hydrogen chloride from the surface. Our observations indicated that both hydronium and chloride ions migrated from the interfacial layer to segregate to the surface at high temperature. Hydrogen chloride gas desorbs via recombination reaction of hydronium and chloride ions floating on the surface. Surface segregation of these species is driven by thermodynamic potential gradient present near the ice surface, whereas in the bulk, their transport is facilitated by thermal diffusion process. The finding suggests that chlorine activation reactions of hydrogen chloride for polar stratospheric ice particles occur at the surface of ice within a depth of at most a few molecular layers, rather than in the bulk phase.

  • PDF

남극큰띠조개 Laternula elliptica (이미패강 : 띠조개과 ) 의 생태 및 생물학적 특성 (Ecology and Biology of the Antarctic Soft - shelled Clam, Laternula elliptica ( Bivalvia : Laternulidae ))

  • 안인영
    • 한국패류학회지
    • /
    • 제10권2호
    • /
    • pp.41-46
    • /
    • 1994
  • The Antarctic soft-shelled clam, Laternula elliptica is widely distributed in shallow waters around the Antarctic Continent and islands. This bivalve species occurs in densepatches particularly in sheltered but frequently ice-impacted areas. This species mostly occurs at atound 20-30 m depth and is rarely found at depths shallower than 5 m where ice abrasion by drifting or grounded icebergs is severe. It burrows deep into sedimint(frequently >50 cm), which seems to be primarily a means for avoiding ice impacts. A pair of stout and highly extendable siphons appear to be a morphological reature to feed in the ice-scoured substrates while staying deep in the sedimint. As one of the largest bivalves in the Antarctic waters, L. elliptica appears to grow rapidly, reaching to a shell length of approximately 100 mm in 12 or 13 years. L. elliptica feeds sctively during summer when food is sufficiently provided, implying that food may be the most inportant fator regulating the growth. Seasonal variations in food availability, and metabolic process in starvation condition possibly during winter, however, are yet to be further investigated.

  • PDF

자성유체를 이용한 다이나믹형 빙축열 시스템에 관한 실험적 연구 (An Experimental Study of Dynamic Type Ice Storage System Using Magneticfluid)

  • 황승식
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1484-1493
    • /
    • 2004
  • In this study, it induced to a conclusion below by experiment consideration to regarding an effective supercooling ends method of the flow cooling water in a tube of continuous ice making method and the static cooling water in a tube of continuous ice making method which used magneticfluid in a dynamic type ice storage system. Continuous ice making in a tube of the flow cooling water was shortened about 12 minutes until supercooling ends that case which gave vertical eccentricity rotation magnetic field 120rpm than did not provide magnetic field by experimental result that was tested to supercooling ends effect from shape control of magneticfluid. Continuous ice making method in a tube of the static cooling water compared with and reviewed the case that was not provided with the magnetic field and exposed cooling surface instantaneously by magnetic field. It confirmed that supercooling degree $\Delta$ $T_{c}$, $\Delta$ $T_{s}$, and $\Delta$ $T_{w}$ became lower because of heat transfering increasing by the occurrence of natural convection between after cooling starting progress time 1∼3 minutes if it did not give a magnetic field, and peformed the supercooling ends when natural convection occurred confirmed that refrigerating capacity was better. That relation $\Delta$ $T_{c}$, and $t_{e}$/($\Delta$ $T_{c}$-$\Delta$ $T_{s}$) after convection occurred, was not depended on $T_{b}$ and initial temperature if the depth of water and thickness of magneticfluid were regular and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.lar and it was possible to verify conjecture of tp from $\Delta$ $T_{s}$ and $\Delta$ $T_{c}$.c}$.>.