• Title/Summary/Keyword: ice deposit

Search Result 10, Processing Time 0.025 seconds

The Paleoenvironment(the LGM time) of the Western Coastal Area of the Korean Peninsula (eastern margin of the yellow sea)based on characteristic Cryoburtation Evidence from the kanweoldo Deposit Cheonsoo Bay West Coast of Korea. (천수만 간월도층의 퇴적후 변형상(cryoturbation)으로 해석되는 제4기 최후빙기의 한 반도 서해안의 고환경)

  • 박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.9 no.1
    • /
    • pp.43-60
    • /
    • 1995
  • The Kanweoldo Deposit in the Cheonsoo Bay western coast of Korean Peninsula is considered to be influenced by severe freezing condition under cold humid environment of the last glacial age. The evidence of severe freezing in the some upper part of the fine-grained Kanweoldo Deposit is characteristically irregular wavy la-mellar structure with the interval of 2∼8mm. In particular lamina show very compacted fabrics composed of rounded or spheroidal discrete aggregates covered by silt caps. Such laminar structure and associated micro-fabrics might owe to soil freezing such as ice segregation in lens form cryophoresis pressure from growing ice and disturbance by frost-creep. Furthermore pedogenesis of cold-humid type such as gleyzation or peseudo-gleyzation also might af-fect the kanweoldo Deposit in the priod of severe cold-humid cli-mate of the Wrm. The Kanweoldo sediment and organic remnant(16,708 B.P. with error limit of 250 years) affected by severe cryogenic activities sug-gest that the paleoclimate of Late Wrm in Korea might be so cold and humid as to engender the cryogenic structure in subaerial silty and sandy silt deposits.

  • PDF

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

Characteristics of Icing Phenomenon with Droplet of an Injector for Liquid Phase LPG Injection System (LPG 액상분사식 인젝터에서 후적에 의한 아이싱 특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.9-16
    • /
    • 2007
  • Since the liquid phase LPG injection(LPLI) system has an advantage of higher power and lower emission characteristics than the mixer type fuel supply system, many studies and applications have been conducted. However, the heat extraction, due to the evaporation of liquid fuel, causes not only a dropping of LPG fuel but also icing phenomenon that is a frost of moisture in the air around the nozzle tip. Because both lead to a difficulty in the control of accurate air fuel ratio, it can result in poor engine performance and a large amount of HC emissions. The experimental investigation was carried out on the bench test rig in this study. It was found that n-butane, that has a relatively high boiling point($-0.5^{\circ}C$), was a main species of droplet composition and also found that the droplet problem was improved by the use of a large inner to outer bore ratio nozzle whose surface roughness is smooth. The icing phenomena were decreased when the an engine head temperature was increased, although a large amount of icing deposit was still observed in the case of $87^{\circ}C$. Also, it was observed that the icing phenomenon is improved by using anti-icing bushing.

Investigation of Icing Phenomenon in Liquid Phase LPG Injection System (액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

Thermal Modeling of Comet-Like Asteroids from AKARI Observation

  • Park, Yoonsoo Bach;Ishiguro, Masateru;Usui, Fumihiko
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.50.3-51
    • /
    • 2016
  • Recent analysis on the thermophysical property of asteroids revealed that their thermal inertia decrease with their sizes at least for main belt asteroids. However, little is known about that of comet-like bodies. In this work we utilized a simple thermophysical model (TPM) to calculate the thermal inertia of a bare nucleus of the comet P/2006 HR30 (Siding Spring) and an asteroid in comet-like orbit 107P/(4015) Wilson-Harrington from AKARI observation data. From five spectroscopic observations of the targets, we find out that the former has thermal inertia of around $2,000J\;m^{-2}K^{-1}s^{-1/2}$ (using pV = 0.055) and the latter has about $1,000-2000J\;m^{-2}K^{-1}s^{-1/2}$ (using pV = 0.055 and 0.043, respectively). These are high enough for both of them to deposit water ice at few centimeters depth, and hence it is difficult to say they are cometary based on the results of this study. These values, however, dependent significantly on the errors of observation and the uncertainties of the input parameters, as well as other conditions which are ignored in simple TPM approach, such as shape model and surface roughness. Further detailed analyses on these cometary bodies will shed light on our understanding of the detailed surfacial characteristics of them.

  • PDF

Study of Littoral Sand Migration Along the West Coast of Ahnmyeon Island, Korea

  • Park, Yong Ahn
    • 한국해양학회지
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1975
  • A marine geological investigation of the glass sand deposit in the beach along the west coast of Ahnmyeon Island, South Chung Cheong Province, Korea was carried out to solve the problen of sand material migration, textural properties of the sands and the glass sand reserve for future exploitation. Several bos coring analyses by means of the internal sedimentary structure.i.e., cross- stratification show significantly that most sands are moving and accumulation along the mean vector direction of $N20^{\circ}E-N60^{\circ}$ E in the area investigated. The average mean size of the sand sediments in the area studied ranges from 0.212mm to 0.275mm. The mechanism of sand migration in the area is considered to be interplay between longshore drift and flood tidal current. The sorting value of the sands ranges from 0.24 to 0.50. Therefore, these sand sediments are characteristic to be "well sorted". The average chemical composition of the glass sand in the area is the following: $SiO\_2$:-90.8%, $Al_2O_3$: -2.18%, $Fe_2O_3$:-0.73%, CaO:-1.79. The binocular microscope examination of the sands show that most of the sands are characteristically ice- clear quartz in mineral composition and their count percentage is mostly 92% or 96%.

  • PDF

A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine (액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF

Experimental Study on the Gasification Characteristics of Liquefied Gas Vaporizer with Various Shape (다양한 형상을 갖는 액화가스 기화기의 기화특성에 관한 실험적 연구)

  • Lee Yong-Hun;Lee Sang-Chul;Jeong Hyo-Min;Chung Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper was studied for optimum design of the used vaporizer at a satellite station. Generally, the cold air is created by temperature drop on the vaporizer surface. In addition, the frost creates ice deposit layer, therefore, heat transfer on vaporizer decreases into the adiabatic condition. By this reason, recent vaporizer system is installed as parallel type, and it takes three times of vaporizer capacity. But this vaporizer system requires much installation costs and restricted by some space. It is very important to solve this problem. This study paper is regarding $LN_2$ vaporizer where the utilization increases recently. There are three variable conditions which are used in this study research. First, fin lengths of 4000mm, 6000mm, 8000mm and 0, 4, 8 fin types were applied rut each vaporizer. Second, we applied four season condition which consist of humidity, temperature and air velocity to the experimental environment. Finally, pressure was applied to get flow rate during experiment. This paper objective is to propose vaporizer type and length data for best performance of vaporizer through experiment.

  • PDF

Fluid Inclusions in Amethyst from the Korea Amethyst Deposit, Uljin, Gyeongbuk (경북 울진 코리아 광상의 자수정에 대한 유체포유물 연구)

  • Lee, Mi-Lyoung;Yang, Kyoung-Hee;Lee, Ju-Youn;Kim, Gyo-Tea
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • Three distinct types of fluid inclusions in amethyst and quartz crystals are associated with metamorphic events in the Korea Amethyst deposit from Uljin-Gun, Gyeongbuk Province. The amethyst displays bimodal grain size distribution in fine-grained, strain-free equigranular quartz with coarse-grained quartz grains with kink bands and undulose extinction. Type I inclusions are liquid-rich and salinity is 0~7 wt% NaCl and the homogenization temperatures ($T_h$) $91{\sim}231^{\circ}C$ with eutectic temperatures ($T_e$) $-52{\sim}-20^{\circ}C$. Type II inclusions are vapor-rich (80~90 vol%). The salinity and $T_h$ ranges 3~6 wt% NaCl and $230{\sim}278^{\circ}C$, respectively with $T_e$ $-56{\sim}-23^{\circ}C$. Type III inclusions contain a daughter mineral other than NaCl. The salinity ranges 32~36 wt% NaCl and $T_h$ $210{\sim}271^{\circ}C$. The textural and fluid inclusion evidences suggest that the host Buncheon granite gneiss and Amethyst pegmatite experienced dynamic recrystallization and the studied fluid inclusions are metamorphic in origin. The metamorphic event possibly occurred at higher temperature than $271{\sim}278^{\circ}C$. The amethysts from Uljin Korea Amethyst can be distinguished from the synthetic amethyst on basis of the distinctive two and three-phases fluid inclusions. Furthermore, it is noticeable that Korea amethyst do not contain NaCl-bearing and $CO_2$-rich fluid inclusions unlike those compared to those from Eonyang and Samcheonpo deposits related to unmetamorphosed granitic rocks.

Absolute Age Determination of One of the Oldest Quaternary(?) Glacial Deposit (Bunthang Sequence) in the Tibetan Plateau Using Radioactive Decay of Cosmogonic $^{10}Be$ and $^{26}Al$, the Central Kavakoram, Pakistan: Implication for Paleoenvironment and Tectonics (방사성 우주기원 동위원소를 이용한 티벳고원에서 가장 오래된 제4기(?) 빙성퇴적물인 Bunthang sequence의 절대 연대측정과 이의 고환경 및 지반운동에 대한 의미)

  • Seong, Yeong-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.2 s.119
    • /
    • pp.165-176
    • /
    • 2007
  • Absolute age of the deposition of 1.3 km-thick Bunthang sequence within the Skardu intermontane basin of the Central Karakoram was determined using radioactive decay of cosmogonic $^{10}Be$ and $^{26}Al$ burial dating. The Bunthang sequence deposited around 2.65 Ma, which is the oldest glaciation in the region. The timing of deposition of the Bunthang sequence is consistent with the previous suggestion that the basin filling took place between Brunhess and Matuyama chrons. Four major sedimentary facies interfinger within the Bunthang sequence: glacial diamict, lacustrine, fluvial and lacustrine facies upward. This sedimentary distinctiveness and the lack of evidence on the faults for alternative pull-apart basin model around the Bunthang sequence, suggest that the depressional basin was formed by deep subglacial erosion during the exrtensive Bunthang Glacial Stage and subsequently the sediments underlain by basal diamict, was quickly deposited by preglacial and paraglacial processes. Temporary ponding of the Indus River due to tectonic uplift in the downstream or blockage by mass movements might make the basin filing more possible. The hypothesis that the single ice sheet developed on the Tibetan Plateau during the global last glacial cycle should be refuted by the existence of the older extensive Bunthang glacier Furthermore, the extensive glaciation during the early Quaternary (and thus progressive decrease in extent with time) suggests that there may have been significant uplift of the Pamir to the west and Himalaya to the south, which would have reduced the penetration of westerlies and Indian summer monsoon and hence moisture supply to the region.