• 제목/요약/키워드: iNOS inhibitor

검색결과 199건 처리시간 0.027초

Inhibition of Lipopolysaccharide-Induced Expression of Inducible Nitric Oxide and Cyclooxygenase-2 by Aquaous of Aconitum pseudo-laeve var. erectum in RAW 264.7 Macrophages

  • Han, Myung-Soo;Lee, Jae-Hyok;Kim, Ee-Hwa
    • 동의생리병리학회지
    • /
    • 제22권3호
    • /
    • pp.678-683
    • /
    • 2008
  • Aconitum pseudo-laeve var. erectum has traditionally been used for the treatment of water retention in the body. Administration of the aqueous extract of Aconitum pseudo-laeve var. erectum has the efficiency of anti-inflammatory activity and modulates the intestinal immune system. However, the mechanism of anti-inflammatory action of Aconitum pseudo-laeve var. erectum has not been clarified yet. In the present study, the effect of Aconitum pseudo-laeve var. erectum against LPS-stimulated expressions of COX-2 and iNOS in cells of the murine RAW 264.7 macrophages was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription- polymerase chain reaction (RT-PCR), PGE2 immunoassay, and NO detection. The results of the present study indicate that Aconitum pseudo-laeve var. erectum is a potent inhibitor of the LPS-induced NO and $PGE_{2}$ production by blocking iNOS and $NF{\kappa}B$ activation in RAW 264.7 macrophages. These findings suggest that Aconitum pseudo-laeve var. erectum is a potential therapeutic for the treatment of inflammatory syndrome.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

  • Lee, Dong-Hyup;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kang, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권2호
    • /
    • pp.123-129
    • /
    • 2009
  • Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-$l\beta$ plus TNF-$\alpha$), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-l induction in rat VSMCs. Aprotinin induced HO-l protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-l inhibitor, tin protoporphyrin IX (SnPPIX). HO-l is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties.

성풍탕이 미세아교세포의 NO 생성에 미치는 영향 (Effects of Seongpung-tang on the NO Production of Primary Microglial Cell)

  • 성강경;임창용;이상관
    • 대한한의학회지
    • /
    • 제21권1호
    • /
    • pp.91-98
    • /
    • 2000
  • The water extract of Seongpungtang(SPT) has commonly been used for treatment of ischemic brain damage in Oriental traditional medicine. However, little is known about the mechanism by which the water extract of SPT rescues brain cells from ischemic damage. To elucidate the protective mechanism of ischemic induced cytotoxicity, the regulation of Lipopolysaccharide (LPS) and PMA (phobol-12-myristate-13-acetate) induced iNOS expression in microglial cells was investigated. LPS and PMA treatment for 48 hr in microglial cells markedly induced nitric oxide (NO), but treatment of the cells with the water extract of SPT decreased nitrite formation. In addition, LPS and PMA treatment for 48 hr induced severe cell death in microglial cells. However treatment of the cells with the water extract of SPT did not induce significant changes compared to the control cells. Furthermore, NO production was markedly decreased by treatment of nuclear factor kappa B(NF-kB) inhibitor, pyrrolidine dithiocarbamate(PDTC). According to the above results, it is suggested that the protective effects of the water extract of SPT against ischemic brain damage may be mediated by regulation of iNOS during ischemic condition.

  • PDF

Inducible Nitric Oxide Synthase Inhibitor form Mela azedarach var. Japonica

  • Kwon, Hak-Cheol;Lee, Byeong-Gon;Kim, Seung-Hee;Jung, Chil-Mann;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo;Zee, Ok-Pyo;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • 제22권4호
    • /
    • pp.410-413
    • /
    • 1999
  • In bioassay-guided search for inducible nitric oxide synthase (iNOS) inhibitory compounds from higher plants of South Korea, two $\beta$-carboline (2) have been isolated form the cortex of Melia azedarach var. japonica. The structures of these compounds were elucidated on the basis of spectroscopic data. Compounds 1 to 2 showed marked inhibitory activity of iNOS on LPS-and interferon-${\gamma}$-stimulated RAW 264.7 cells.

  • PDF

Effect of Various Herbal Extracts on Nitric Oxide Production in Lipopolysaccharide-induced Murine Peritoneal Macrophages

  • Ko, Young-Kwon;Seo, Dong-Wan;Ahn, Seong-Hoon;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Lee, Hoi-Young;Han, Jeung-Whan;Lee, Hyang-Woo
    • Biomolecules & Therapeutics
    • /
    • 제7권3호
    • /
    • pp.210-215
    • /
    • 1999
  • Nitric oxide (NO) can mediate numerous physiological processes, including vasodilation, neurotransmission, cytotoxicity, secretion and inflammatory response. The regulation of NO production by inducible NO synthase (iNOS) is considered to be the possible target of the development of anti-inflammatory agent, based on the observation that NO can activate cyclooxygenase, which results in the synthesis of prostaglandins. In an effort to screen new inhibitor of NO production from about 352 species of herbal extracts, we found 9 species with 50% or more inhibitory effect on NO production. Especially, the dose-dependent inhibition of NO production in lipopolysaccharide-treated macrophages by two of the herbal extracts (Artemisiae asiaticae Herba and Saussureae Radix) was due to the decrease in the expression of iNOS.

  • PDF

The Inhibitory Principle of Lipopolysaccharide-Induced Nitric Oxide Production from Inula Britannica var. Chinensis

  • Je, Kang-Hoon;Han, Ah-Reum;Lee, Hyun-Tai;Mar, Woong-Chon;Seo, Eun-Kyoung
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.83-85
    • /
    • 2004
  • A sesquiterpene lactone, 1-O-acetyl-4R,6S-britannilactone (1) isolated from the flowers of Inula britannica L. var. chinensis (Rupr.) Reg. (Compositae), was found as an iNOS inhibitory constituent for the first time with an $IC_{50}$ value of 22.1 $\mu$ M which is more potent than the positive control, L-$N^6$-(1-iminoethyl)lysine ($IC_{50} =33.7 \mu$ M). Structure of compound 1 was identified by 1D and 2D NMR experiments and by comparison with the reference standard.

The expression of a nitric oxide derivative, tissue inhibitors of metalloproteinase-3, and tissue inhibitors of metalloproteinase-4 in chronic periodontitis with type 2 diabetes mellitus

  • Jung, Hyun-Yub;Kim, Yong-Gun;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • 제43권2호
    • /
    • pp.87-95
    • /
    • 2013
  • Purpose: The purpose of this study was to analyze the expression of inducible nitric oxide synthases (iNOS), tissue inhibitors of metalloproteinase $(TIMP)_{-3}$, and $TIMP_{-4}$ in the gingival tissues of periodontal patients with or without type 2 diabetes mellitus (DM). Methods: Depending on the patient's systemic condition and clinical criteria of the gingiva, each gingival sample was classified into one of three groups. Sixteen clinically, systemically healthy patients (group 1), 16 periodontal patients (group 2), and 16 periodontal patients with DM (group 3) were included. Tissue samples in each group were collected, prepared, and analyzed by western blotting. Quantification of the relative amount of $TIMP_{-3}$, $TIMP_{-4}$, and iNOS was performed. Results: The expression levels of iNOS and $TIMP_{-3}$ both increased in group 1, group 2, and group 3 in increasing order, and were significantly higher in both group 2 and group 3 as compared to group 1 (P<0.05). The expression levels of $TIMP_{-4}$ increased in the same order, but significantly increased in group 2 as compared to group 1, in group 3 as compared to group 1, and group 3 as compared to group 2 (P<0.05). Conclusions: This study demonstrated that iNOS, $TIMP_{-3}$, and $TIMP_{-4}$ might be involved in the progression of periodontal inflammation associated with type 2 DM. It is thought that further study of these factors can be applied practically for the diagnosis and control of periodontitis in diabetics.

Synergistic Induction of iNOS by IFN-${\gamma}$ and Glycoprotein Isolated from Dioscorea batatas

  • Pham, Thi Thu Huong;Lee, Min Young;Lee, Kun Yeong;Chang, In Youp;Lee, Seog Ki;Yoon, Sang Pil;Lee, Dong-Cheol;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.431-436
    • /
    • 2012
  • Dioscorea species continue to be used in traditional Chinese medicine, and represent a major source of steroid precursors for conventional medicine. In the previous study, We isolated glycoprotein (GDB) from Dioscorea batatas, characterized, and demonstrated immunostimulating activity in C57BL/6 mice. The aim of this study was to investigate the mechanism whereby GDB activates macrophages. Macrophages activation by GDB was investigated by analyzing the effects of GDB on nitric oxide (NO) production, iNOS expression, mitogen activated protein kinase (MAPK) phosphorylation, and transcription factor activation. In the presence of IFN-${\gamma}$, GDB strongly stimulated macrophages to express iNOS and produce NO. Furthermore, the activation of p38 was synergistically induced by GDB plus IFN-${\gamma}$, but SB203580 (a p38 inhibitor) inhibited GDB plus IFN-${\gamma}$-induced p38 activation. This study indicates that GDB is an important activator of macrophages. Furthermore, due to the critical role that macrophage activation plays in innate immune response, the activation effects of GDB on macrophages suggest that GDB may be a useful immunopotentiating agent.

백서의 기도 선경성 염증에서 산화질소 합성효소(Nitric Oxide Synthase)의 역할과 분포 (The Role and Localization of Nitric Oxide Synthase in Neurogenic Inflammation of the Rat Airways)

  • 심재정;이상엽;이상화;서정경;김철환;조재연;인광호;유세화;강경호
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권3호
    • /
    • pp.420-433
    • /
    • 1996
  • 연구 배경 : 기도의 신경성 염증에서 산화질소가 관여하는 것으로 알려져 있으나, 그 역할에 대해서는 논란이 많다. 본 연구는 기도 신경성 염증에 관여하는 산화질소의 역할을 보다 명확히 밝히고자 하였다. 방법 150-350gm의 백서를 이용하여 기도의 신경성 염증에서 신경단백질 수용체 차단제인 FK224와 산화질소 합성효소 억제제인 $N^{\omega}$-nitro-L-arginine (L-NNA) 의 혈장유출에 대한 효과를 먼저 확인하고, 기도 신경성 염증에 관여하는 산화질소가 기도의 신경말단에서만 유리되는 지 또는 신경성 염증에서 유리된 신경 단백질로 인하여 다른 폐장 조직 세포에서도 산화질소가 유리되는 지를 규명하기 위하여 산화질소 합성효소의 종류와 그 분포를 polyclonal anti-NOS antibody에 대한 면역화학효소법으로 확인하여 다음과 같은 결과를 얻었다. 결과 : 백서의 기도 신경성 염증에서 신경단백질 수용체 차단제인 FK224는 혈장유출을 억제시키며 산화질소 합성효소 억제제인 L-NNA는 혈장유출을 증가시켰다(P<0.05). 기도 신경성 염증유발시 조직내 염증세포의 침윤은 증가되었으며, FK224로 전처치시 조직내의 염증세포의 침윤을 억제시켰다(P<0.05). 염증을 유발하는 것으로 알려진 유도형 산화질소 합성효소(iNOS)의 활성도는 침착된 염증세포에서만 유의하게 증가하였다(P<0.05). 염증을 억제하는 것으로 알려진 산화질소를 생성하는 구성형 산화질소 합성효소(cNOS)인 eNOS의 활성노는 혈관내피세포에서 증가하였으나 의미는 없었고, bNOS의 활성도는 신경성 염증에서 신경세포에서만 증가되었으며, FK224에 의해서도 bNOS의 활성도는 억제되지 않았다. 결론 : 기도의 신경성 염증에서 조직내 염증세포가 증가되며 iNOS에서 생성되는 산화질소가 주로 혈장유출에 관여하는 것으로 사료된다. FK224의 전처치는 염증세포의 조직내 침윤을 억제시키며, iNOS 의 활성도도 감소시켜 기도 혈장유출을 억제시키는 것으로 생각된다. 또한 기도의 신경성 염증에서 NANC신경에서도 산화질소가 유리됨을 알 수 있었으며, 기도 신경성 염증에서 산화질소 합성효소 억제제인 L-NNA로 혈장유출이 증가되는 것은 bNOS에서 유리되는 산화질소의 생성을 L-NNA가 억제시킬 수 있으므로 산화질소 합성효소 억제제가 기도 신경성 염증의 혈장유출을 증가시키는 데에 bNOS가 일부 작용할 것으로 생각되는 바이다.

  • PDF