• 제목/요약/키워드: iNOS inhibitor

검색결과 199건 처리시간 0.03초

Hypoxia Enhances Nitric Oxide Synthesis by Upregulation of Inducible Nitric Oxide Synthase in Endothelial Cells

  • Rhee, Ki-Jong;Gwon, Sun-Yeong;Lee, Seunghyung
    • 대한의생명과학회지
    • /
    • 제19권3호
    • /
    • pp.180-187
    • /
    • 2013
  • Hypoxia is an integral part of the environment during luteolysis. In this study we examined whether hypoxia could directly stimulate endothelial cells to produce nitric oxide (NO). Endothelial cells were cultured in hypoxic (5% $O_2$) or normoxic (20% $O_2$) conditions and the levels of total NO, inducible NO and endothelial NO was measured. We found that hypoxia but not normoxia upregulated NO production. The increased NO levels correlated with increased inducible NO synthase (iNOS) expression whereas expression of endothelial NOS (eNOS) expression remained constant. Addition of the iNOS specific inhibitor 1400W to hypoxic cultures prevented NO production suggesting that hypoxia-induced NO production in endothelial cells was due mainly to upregulation of iNOS. We also found that prostaglandin $F_{2{\alpha}}$ (PGF) production was unaffected by hypoxia suggesting that upregulation of NO was not due to increased synthesis of PGF. In summary, we report that endothelial cells cultured under hypoxic conditions produce NO via the iNOS pathway. This study provides the importance of the relation between the hypoxic environment and the induction of NO by endothelial cells during regression of the corpus luteum in the ovary.

Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca2+-dependent eNOS activation

  • Koo, Bon-Hyeock;Lee, Jonghoon;Jin, Younghyun;Lim, Hyun Kyo;Ryoo, Sungwoo
    • BMB Reports
    • /
    • 제54권10호
    • /
    • pp.516-521
    • /
    • 2021
  • Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca2+ levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca2+ elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca2+ concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1-/-) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca2+ concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • 제22권3호
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Postischemic Treatment with Aminoguanidine Inhibits Peroxynitrite Production in the Rat Hippocampus Following Transient Forebrain Ischemia

  • Choi, Yun-Sik;Yoon, Yeo-Hong;Lee, Ju-Eun;Cho, Kyung-Ok;Kim, Seong-Yun;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2004
  • Transient forebrain ischemia results in the delayed neuronal death in the CA1 area of the hippo-campus. The present study was performed to determine effects of aminoguanidine, a selective iNOS inhibitor, on the generation of peroxynitrite and delayed neuronal death occurring in the hippocampus following transient forebrain ischemia. Transient forebrain ischemia was produced in the conscious rats by four-vessel occlusion for 10 min. Treatment with aminoguanidine (100 mg/kg or 200 mg/kg, i.p.) or saline (0.4 ml/100 g, i.p.) was started 30 min following ischemia-reperfusion and the animals were then injected twice daily until 12 h before sacrifice. Immunohistochemical method was used to detect 3-nitrotyrosine, a marker of peroxynitrite production. Posttreatment of aminoguanidine (200 mg/kg) significantly attenuated the neuronal death in the hippocampal CA1 area 3 days, but not 7 days, after ischemia-reperfusion. 3-Nitrotyrosine immunoreactivity was enhanced in the hippocampal CA1 area 3 days after reperfusion, which was prevented by the treatment of aminoguanidine (100 mg/kg and 200 mg/kg). Our findings showed that (1) the generation of peroxynitrite in the hippocampal CA1 area 3 days after ischemia-reperfusion was dependent on the iNOS activity; (2) the postischemic delayed neuronal death was attenuated in the early phase through the prevention of peroxynitrite generation by an iNOS inhibitor.

Yomogin, an Inhibitor of Nitric Oxide Production in LPS-Activated Macrophages

  • Ryu, Jae-Ha;Lee, Hwa-Jin;Jeong, Yeon-Su;Ryu, Shi-Yong;Han, Yong-Nam
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.481-484
    • /
    • 1998
  • In activated macrophages the inducible form of nitric oxide synthase (i-NOS) generates high amounts of toxic mediator, nitric oxide (NO) which contributes to the circulatory failure associated with septic shock. A sesquiterpene lactone compound (yomogin) isolated from medicinal plant Artemisia princeps Pampan inhibited the production of NO in LPS-activated RAW 264.7 cells by suppressing i-NOS enzyme expression. Thus, yomogin may be a useful candidate for the development of new drugs to treat endotoxemia and inflammation accompanied by the overproduction of NO.

  • PDF

Suppressive effects on the expression of cyclooxygenase-2 and inducible nitric oxide synthase by a natural sesquiterpenoid in lipopolysaccharide-stimulated mouse macrophage cells

  • Min, Hye-Young;Park, Hyen-Joo;Park, Eun-Jung;Lee, Sang-Kook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.101-101
    • /
    • 2003
  • Prostaglandins (PGs) and nitric oxide (NO) produced by inducible cyclooygenase (COX-2) and nitric oxide synthase (iNOS), respectively, have been implicated as important mediators in the process of inflammation and carcinogenesis. On this line, the potential COX-2 or iNOS inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. In our continuing efforts of searching for novel cancer chemopreventive agents from natural products, we isolated natural sesquiterpenoids as potential COX-2 and iNOS inhibitors in cultured lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells. Alantolactone, a natural eudesmane-type sesquiterpenoid, exhibited a potent inhibition of COX-2 (IC50 = 0.4 $\mu\textrm{g}$/$m\ell$) and iNOS activity (IC50 = 0.08 $\mu\textrm{g}$/$m\ell$) in the assay system determined by PGE2 and NO accumulation, respectively. The inhibitory potential of alantolactone on the PGE2 and NO production was well coincided with the suppression of COX-2 and iNOS protein and mRNA expression in LPS-induced macrophages. Furthermore, alantolactone inhibited NF-kB but not AP-l binding activity on nuclear extracts evoked by LPS-stimulated macrophage cells, suggesting the possible involvement of NF-kB in the regulation of COX-2 and iNOS expression. In further study with COX-2-expressing human colon HT-29 cells, alantolactone inhibited the cell proliferation, down-regulated COX-2, and inhibited the ERK phosphorylation in the early time. These results suggest that a natural sesquiterpenoid alantolactone might be a potential lead candidate for further developing COX-2 or iNOS inhibitor possessing cancer chemopreventive or anti-inflammatory activity

  • PDF

NF-κB signaling을 통한 Rosa davurica Pall.의 NO 생성 저해 효과 (Inhibitory Effect of Rosa davurica Pall. on LPS-mediated Nitric Oxide Productionvia NF-κB signaling)

  • 권순표;이선령
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.50-55
    • /
    • 2023
  • 본 연구는 Rosa davurica Pall. 잎 추출물의 염증 억제 효과 및 그 조절 기전을 알아보기 위해 수행되었다. Rosa davurica Pall. 잎 추출물의 항염 평가는 LPS로 자극한 Raw 264.7 대식세포에서 생성되는 NO와 iNOS 분석을 통해 확인하였다. Rosa davurica Pall. 추출물의 처리는 농도의존적으로 LPS에 의한 NO 생성과 iNOS 단백질의 발현을 유의미하게 억제하였고 500 ㎍/ml의 고농도에서는 세포 독성을 나타내었다. Rosa davurica Pall. 추출물은 LPS에 의해 인산화된 IκB 발현을 억제하였고 LPS에 의해 활성화된 NF-κB의 인산화를 약화시킴으로써 NF-κB의 활성화를 억제하였다. 또한, NF-κB signaling 특이 저해제인 PDTC와 Rosa davurica Pall. 추출물의 동시 처리는 각각 처리군에 비해 NO 생성과 iNOS 단백질 발현을 더욱 억제하였다. 이상의 결과는 Rosa davurica Pall. 추출물이 NF-κB signaling 조절에 의해 NO 생성을 억제함으로써 LPS에 의한 대식세포 염증 반응을 제어하고 있음을 제시해 주고 있다.

Inhibitory Effect of Farfarae Flos Water Extract on COX-2, iNOS Expression and Nitric Oxide Production in lipopolysaccharide - activated RAW 264.7 cells

  • Yoon Tae Gyoung;Byun Boo Hyeong;Kwon Teag Kyu;Suh Seong Il;Byun Sung Hui;Kwon Young Kyu;Kim Sang Chan
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.908-913
    • /
    • 2004
  • Farfrae Flos has been clinically used for the treatment of asthma in traditional oriental medicine. There is lack of studies regarding the effects of Farfrae Flos on the immunological activities. The present study was conducted to evaluate the effect of Farfrae Flos on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, Farfrae Flos water extract inhibited nitric oxide production in a dose-dependent manner and abrogated inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2). Farfrae Flos water extract did not affect on cell viability. To investigate the mechanism by which Farfrae Flos water extract inhibits iNOS and COX-2 gene expression, we examined the on the phospholylation of inhibitor κBα and production of TNF-α, IL-1β and IL-6. Results provided evidence that Farfrae Flos inhibited the production of interleukin-1β (IL-1β) and the activation of phospholylation of inhibitor κBα in Raw 264.7 cells activated with LPS. These findings suggest that Farfrae Flos can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Phagocytic Effects of β-Glucans from the Mushroom Coriolus versicolor are Related to Dectin-1, NOS, TNF-α Signaling in Macrophages

  • Jang, Seon-A;Kang, Se-Chan;Sohn, Eun-Hwa
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.438-444
    • /
    • 2011
  • The mushroom Coriolus versicolor contains biologically active polysaccharides, most of which belong to the ${\beta}$-glucan group. Diverse physicochemical properties, due to different sources and isolated types of ${\beta}$-glucans, can induce distinct biological activities. We investigated the effects of ${\beta}$-glucans from C. versicolor on phagocytic activity, nitric oxide (NO), TNF-${\alpha}$ production, and signaling of dectin-1, a well-known ${\beta}$-glucan receptor, in macrophages. ${\beta}$-Glucans increased phagocytic activity and TNF-${\alpha}$ and NO-iNOS/eNOS production. Laminarin, a specific inhibitor of dectin-1, showed strong inhibitory effects on phagocytosis and subsequent TNF-${\alpha}$, iNOS, and eNOS production increased by ${\beta}$-glucans, indicating that ${\beta}$-glucans reacts with dectin-1 receptors. We examined whether the aforementioned cytokines were involved in the signaling pathway from the dectin-1 receptor to phagocytosis, and found that the inhibition of iNOS, eNOS, and TNF-${\alpha}$ receptors significantly decreased ${\beta}$-glucan-induced phagocytosis. In conclusion, our study showed that dectin-1 signaling, triggered by ${\beta}$-glucans, subsequently elicited TNF-${\alpha}$ and NO-iNOS/eNOS production, and that these molecules seem to act as secondary molecules that cause eventual phagocytosis by macrophages. These findings suggest that C. versicolor could be used as a nutritional medicine that may be useful in the treatment of infectious disease.

PAF 길항제가 허혈성 대뇌 피질내 Nitric Oxide 합성에 미치는 영향 (Effect of PAF Antagonists on the Nitric Oxide Synthesis in Ischemic Cerebral Cortex)

  • 노순기;박규현;이원석
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.665-672
    • /
    • 1997
  • This study aimed to investigate the mechanism of cerebroprotection of platelet-activating factor(PAF) antagonists in transient cerebral ischemia of rat. Right middle cerebral artery(MCA) of Sprague-Dawley rat was occluded for 2 hours using an intraluminal filament technique. After 22 hours of reperfusion, morphometrically detectable infarct was developed in the cortex and striatum identical to the territory of MCA. The infarct size was significantly reduced by PAF antagonists, BN 52021 and CV-6209, as well as an inducible nitric oxide synthase(iNOS) inhibitor aminoguanidine(1 mg/kg, i.p., respectively) administered 5 min after MCA occlusion. PAF antagonists significantly inhibited the enzymatic activities of both myeloperoxidase and iNOS in the cerebral hemisphere ipsilateral to ischemia, whereas aminoguanidine did not inhibit myeloperoxidase activity but significantly inhibited the iNOS activity. These results suggest that PAF antagonists exert a cerebroprotective effect against ischemic brain damage through inhibition of leukocyte infiltration and iNOS activity in the postischemic brain.

  • PDF