• Title/Summary/Keyword: iNOS expression

Search Result 1,294, Processing Time 0.03 seconds

Time Course of Inducible NOS Expression of Lung Tissue during Sepsis in a Rat Model (백서의 패혈증 모델에서 시간에 따른 폐조직에서의 Inducible Nitric Oxide Synthase 발현)

  • Kim, Joong Hee;Kim, Seong Chun;Kwon, Woon Yong;Suh, Gil Joon;Youn, Yeo Kyu
    • Journal of Trauma and Injury
    • /
    • v.21 no.2
    • /
    • pp.120-127
    • /
    • 2008
  • Purpose: Many studies on the time course of inducible nitric oxide synthase (iNOS) gene expression have been performed in the LPS (Lipopolysaccharide)-induced endotoxemic model, but there have been few experimental approaches to continuous peritonitis-induced sepsis model. We conducted this study to establish basic data for future sepsis-related research by investigating the time course of iNOS gene expression and the relationship with the production of inflammatory mediators in the early sepsis model induced by cecal ligation and puncture (CLP). Methods: Male Sprague-Dawley rats were operated on by sing the CLP method to induce of peritonitis; and then, they were sacrificed and samples of blood and lung tissues were obtained at various times (1,2,3,6,9 and 12 h after CLP). We observed the expression of iNOS mRNA from lung tissues and measured the synthesis of nitric oxide, $IL-1{\beta}$, and $TNF-{\alpha}$ from the blood. Results: iNOS mRNA began to be expressed at 3 h and was maintained untill 12 h after CLP. The nitric oxide concentration was increased significantly at 6 h, reached its peak level at 9 h, and maintained a plateau untill 12 h after CLP. $TNF-{\alpha}$ began to be detected at 3 h, increased gradually, and decreased steeply from 9 h after CLP. $IL-1{\beta}$ showed its peak level at 6 h after CLP, and tended to decrease without significance. Conclusion: We observed that the iNOS gene was expressed later in peritonitis-induced sepsis than in LPS-induced sepsis. Nitric oxide and key inflammatory mediators were also expressed later in peritonitis-induced sepsis than in LPS-induced sepsis.

Anti-inflammatory Effect of Red Ginseng through Regulation of MAPK in Lipopolysaccharide-stimulated RAW264.7 (Lipopolysaccharide로 유도된 RAW264.7 세포에서 MAPK에 의한 홍삼추출물의 항염증 효과)

  • Shin, Ji-Su;Kim, Jong-Myoung;An, Won-Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.3
    • /
    • pp.293-300
    • /
    • 2012
  • Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are important inflammatory mediators implicated in pathogenesis of inflammation and certain types of human cancers. The present study was designed to determine whether Red Ginseng (RG) could modulate $I{\kappa}B$-kinase, iNOS and COX-2 gene expression and immune responses in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS). RG extract suppressed the expression of LPS-induced $I{\kappa}B$, iNOS, COX-2, and immune responses in a dose-dependent manner. It also showed an anti-inflammatory effect by inhibiting NF-${\kappa}B$ immune response induced by LPS treatment. Inhibitory effect of RG on LPS-induced inflammation was mediated by suppressed phosphorylation of ERK, JNK and p38 through the regulation of the mitogen-activated protein kinase (MAPK) pathway leading to a decreased production of NO, iNOS, COX-2 and NF-${\kappa}B$. The results implied the role of RG as an inflammation regulator and its possible application for curing inflammatory diseases.

Ethanolic Extract of Chondria crassicaulis Inhibits the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in LPS-Stimulated RAW 264.7 Macrophages

  • Kim, Yeon-Kye;Jeong, Eun-Ji;Lee, Min-Sup;Yoon, Na-Young;Yoon, Ho-Dong;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.275-282
    • /
    • 2011
  • Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been implicated in various inflammatory diseases. In this study, we investigated the anti-inflammatory activities of Chondria crassicaulis ethanolic extract (CCE) by measuring its effects on the expression of iNOS and COX-2 proteins in lipopolysaccharide (LPS)-treated RAW 264.7 murine macrophages. CCE significantly and dose-dependently inhibited the LPS-induced release of nitric oxide and prostaglandin $E_2$, and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells, without causing any cytotoxicity. It also inhibited the production of the pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 cells. Moreover, treatment with CCE strongly suppressed nuclear factor-${\kappa}B$ (NF-${\kappa}B$) promoter-driven expression in LPS-treated RAW 264.7 cells. CCE treatment blocked nuclear translocation of the p65 subunit of NF-${\kappa}B$ by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that CCE regulates iNOS and COX-2 expression through NF-${\kappa}B$-dependent transcriptional control, and identifies potential candidates for the treatment or prevention of inflammatory diseases.

Inhibition of LPS induced iNOS, COX-2 and cytokines expression by kaempferol-3-O-${\beta}$-D-sophoroside through the $NF{-\kappa}B$ inactivation in RAW 264.7 cells (Kaempferol-3-O-${\beta}$-D-sophoroside의 RAW 264.7 세포에서 $NF{-\kappa}B$ 억제를 통한 LPS에 의해 유도되는 iNOS, COX-2 및 cytokine들의 발현 저해효과)

  • Park, Seung-Jae;Shin, Ji-Sun;Cho, Woong;Cho, Young-Wuk;Ahn, Eun-Mi;Baek, Nam-In;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • In the present study, we investigated the anti-inflammatory effects by kaempferol-3-O-${\beta}$-D-sophoroside (KS) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line compared with kaempferol. KS significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, KS reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-6 (IL-6) were also reduced by KS. Moreover, KS attenuated the LPS-induced activation of nuclear factor-kappa B ($NF{-\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by KS are achieved by the downregulation of $NF{-\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Inhibition of iNOS Expression Via Ursodeoxycholic Acid in Murine Microglial Cell, BV-2 Cell Line (생쥐 소교세포(BV-2)에서 우르소데옥시콜린산에 의한 iNOS 발현억제)

  • Joo, Seong-Soo;Won, Tae-Joon;Hwang, Kwang-Woo;Lee, Do-Ik
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2005
  • Background: Inflammation in the brain has known to be associated with the development of a various neurological diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide (NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease (AD) which is resulted in cell death. Among those pro-inflammatory compounds, NO contributes to the cell death by directly or indirectly. Methods: In the study, we examined whether ursodeoxycholic acid (UDCA), a non-toxic hydrophilic bile acid, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase (iNOS). In signal transduction, we also examined the NF-${\kappa}B$ (p65/p50), IKK, and I ${\kappa}B$, which are associated with the expression of iNOS gene using western blots. Results: In the present study, we found that UDCA effectively inhibited NO production in BV-2 microglial cell, and NF-${\kappa}B$ activation was reduced by suppressing IKK gene expression and by increasing the I${\kappa}B$ in cytosol comparing those to the positive control LPS. Conclusion: Taken together, these data suggested that UDCA may playa crucial role in inhibiting the NO production and the results imply that UDCA suppresses a cue signal of the microglial activation via stimulators, such as ${\beta}$-amyloid peptides which are known to stimulate microglia in AD pathogenesis.

Inhibitory effect of Chelidonii Herba water extract on production of Nitric Oxide, Expression of iNOS and COX-2 in lipopolysaccharide-activated Raw 264.7 cells (백굴채(白屈菜)의 물추출물이 lipopolysaccharide로 유도된 Nitric Oxide의 생성 및 iNOS와 COX-2의 발현에 미치는 영향)

  • Zhao Rong-Jie;Kim Young-Woo;Byun Sung-Hui;Kim Sang-Chan
    • Herbal Formula Science
    • /
    • v.12 no.2
    • /
    • pp.163-173
    • /
    • 2004
  • Chelidonii Herba (CHE, Baek-gul-chae in Korean), which has its original description in Gu-Hwang-Bon-Cho, a classic book of oriental Herbal book, is widely used in the treatment of stomach cancer, jaundice, gasrtic ulcer, edema and stomach pain, in Korea, Japan and China. The present study was conducted to evaluate the effect of CHE on the nitric oxide (NO) production, iNOS and COX-2 expression in lipopolysaccharide - activated Raw 264.7 cells. After the treatment of CHE, NO production was monitored by measuring the nitrite content in culture medium, cell viability was measured by MIT assay. COX-2 and iNOS were determined by lmmunoblot analysis. The production of nitric oxide was significantly inhibited by pretreatment (1h) with CHE (0.1-0.3 mg/ml) on LPS-activated Raw264.7 cells. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein were up-regulated by LPS, but the increased levels of iNOS and COX-2 were inhibited by pretreatment of CHE (0.1-0.3 mg/ml), respectively. Thus, the present data suggest that CHE may play an important role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF

Pristimerin Inhibits Inducible Nitric Oxide Synthase Expression Induced by TLR Agonists

  • Kim, Su-Yeon;Heo, Sung-Hye;Park, Sin-Aye;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.60-65
    • /
    • 2019
  • Toll-like receptors (TLRs) are one of the families of pattern recognition receptors (PRR) operating in the innate immunity. TLRs have the ability to recognize relatively conserved microbial components, which are generally referred to as pathogen-associated molecular patterns (PAMPs). The activation of TLRs signaling leads to the activation of $NF-{\kappa}B$ and the expression of pro-inflammatory gene products such as cytokines and inducible nitric oxide synthase (iNOS). To evaluate the therapeutic potential of pristimerin, which is a naturally occurring triterpenoid compound from Celastraceae plants, iNOS expression induced by MALP-2 (TLR2 and TLR6 agonist), Poly[I:C] (TLR3 agonist), or LPS (TLR4 agonist) were examined. Pristimerin suppressed the iNOS expression induced by MALP-2, Poly[I:C], or LPS. These results suggest that pristimerin can modulate TLRs signaling pathways leading to decreased inflammatory gene expression.

The Effects of Bee Venom and Melittin on NO, iNOS and MAP Kinase Family in RAW 264.7Cellscells (봉양침액(蜂藥鍼液)과 melittin이 RAW 264.7세포(細胞)의 NO, iNOS 및 MAPK에 미치는 영향(影響))

  • Kang, Jun;Song, Ho-sueb
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.107-119
    • /
    • 2004
  • Objective : The purpose of this study was to investigate the effect of Bee Venom and melittin on the lipopolysaccharide(LPS) and sodium nitroprusside(SNP)-induced expressions of Cell viability, nitric oxide(NO), inducible nitric oxide synthase(iNOS), extra-signal response kinase(ERK), jun N-terminal Kinase(JNK) and p38 kinase(p38)- mitogen activated protein kinase(MAPK) Family- in RAW 264.7 cells, a murine macrophage cell line. Methods : The expressions of cell viability by MTT assay, NO by Nitrite assay and iNOS, ERK, JNK and p38 were determined by Western blotting. Results : 1. Compared with the control group, 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin increased cell viability of RAW 264.7 induced by LPS and SNP significantly respectively. 2. Compared with the control group, 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of NO induced by LPS and SNP significantly respectively. 3. Compared with the control group, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of iNOS induced by LPS significantly and 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin inhibited expression of iNOS induced by SNP significantly. 4. Compared with the control group, the expression of ERK induced by LPS and SNP decreased significantly in the treatment groups of $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin, which of p-ERK by LPS also did in 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin, but which of p-ERK by SNP did not decrease. 5. Compared with the control group, the. expression of JNK induced by LPS and SNP decreased significantly in the treatment groups of 5, $10{\mu}g/m{\ell}$ melittin, which of p-JNK by LPS in 5, $10{\mu}g/m{\ell}$ melittin and by SNP in $1{\mu}g/m{\ell}$ bee venom and $10{\mu}g/m{\ell}$ melittin decreased significantly. 6. Compared with the control group, the expression of p38 induced by LPS did not have significant difference, which induced by SNP decreased significantly in the treatment groups of 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin. p-p38 induced by LPS decreased significantly in the treatment group of $10{\mu}g/m{\ell}$ of melittin, which induced by SNP also decreased significantly in 0.5, 1, $5{\mu}g/m{\ell}$ bee venom and 5, $10{\mu}g/m{\ell}$ melittin.

  • PDF

The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells (Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과)

  • Kim, Sang-Bo;Seong, Yeong-Ae;Jang, Hee-Jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1689-1697
    • /
    • 2011
  • In this study, we investigated the anti-inflammation effect of Persicaria thunbergii (P. thunbergii) on RAW 264.7 murine macrophage cells. The anti-inflammatory activity of P. thunbergii was determined by measuring expression of the LPS-induced inflammatory proteins, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). Methanol extract of P. thunbergii decreased the expression of iNOS, COX-2 and NF-${\kappa}B$, and increased the expression of HO-1 in LPS-stimulated RAW264.7 cells. Methanol extract was fractioned by n-butanol, hexane and ethyl acetate (EtOAc) and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, the EtOAc soluble fraction was investigated by the expression of prostaglandin $E_2$ ($PGE_2$), and showed decreasing form to the dose-dependent manner. EtOAc extract showed the most effective inhibitory activity of the expression of iNOS, COX-2 and NF-${\kappa}B$, and the production of NO. The study showed that P. thunbergii has anti-inflammatory activity through the decrease of NO and inhibition of iNOS, COX-2, $PGE_2$ and NF-${\kappa}B$ expression, and by the increase of HO-1 enzyme. This study needs for more investigation to find out the most effective single compound with anti-inflammatory activity.