• Title/Summary/Keyword: iNOS assay

Search Result 386, Processing Time 0.036 seconds

Antioxidant and Anti-inflammatory Effect of Extracts from Flammulina velutipes (Curtis) Singer (팽이버섯 추출물의 항산화 및 항염증 활성)

  • Kang, Hyun-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1072-1078
    • /
    • 2012
  • The potential antioxidant and anti-inflammatory effect of water and ethanol extracts from Flammulina velutipes (Curtis) Singer (FVS) on hydrogen peroxide ($H_2O_2$) and LPS-induced oxidative damage in PC-12 and RAW264.7 cells were investigated. The DPPH radical scavenging activities of the water extract from FVS was the highest, and the 50% inhibitory concentration value was 0.388 mg/mL. Also, the antioxidant activities of water and ethanol extracts were determined by ferric reducing antioxidant power, 2,2'-azino-bis-(3-ethybenzothiazoline-6-sulphonic acid) radical scavenging activity. In addition, water extract from FVS showed a strongly inhibitory effect on lipid peroxidation by measuring ferric thiocyanate values. The water extract decreased cell apoptosis in PC-12 cells against $H_2O_2$-induced oxidative damage. In addition, FVS extracts exhibited the strongest nitric oxide (NO) inhibition activity. It was also found that FVS extract inhibited LPS-induced iNOS and COX-2 expression in RAW264.7 cells. The findings of the present study suggest that extracts of FVS exhibit anti-oxidative and anti-inflammatory activity against oxidative stress and/or stimulated cells.

Anti-inflammatory effects of a mixture of coffee and sword bean extracts (커피와 작두콩 추출물의 혼합에 따른 항염증 효과)

  • Bae, Hun Cheon;Park, Jung Up;Moon, Jae-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.237-243
    • /
    • 2020
  • Coffee is one of the most widely consumed beverages in the world, and sword bean (Canavalia gladiata, SB) reportedly possesses various biological activities. Therefore, in this study, to reduce caffeine intake and improve coffee function, SB was selected as a supplementary material for blending coffee. The antioxidant and anti-inflammatory activities of coffee with the SB extract at concentrations of 0.1-0.5% (v/v) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and RAW 264.7 cells, respectively. The DPPH radical-scavenging activity of SB-treated coffee depended on the concentration of the SB extract. In the cell culture experiment, cytotoxicity was not observed at any SB concentration. In addition, the inducible nitric oxide synthesis protein expression as well as the increases in nitric oxide and interleukin-6 expression were effectively inhibited by SB addition to the coffee. These results indicate that SB might be useful as a supplementary ingredient to enhance the caffeinated drink functions.

Antioxidative and Anti-inflammatory Activities of Ardisia arborescens Ethanol Extract (Ardisia arborescens 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.713-720
    • /
    • 2014
  • In this study, the antioxidative and anti-inflammatory activities of Ardisia arborescens ethanol extract (AAEE) were evaluated using in vitro assays and a cell culture model system. AAEE exhibited potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid, which was used as a positive control. Moreover, AAEE effectively suppressed lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, AAEE induced the expression of antioxidative enzymes, heme oxygenase 1 (HO-1), and thioredoxin reductase 1 (TrxR1), in addition to their upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The upstream signaling pathways of mitogen-activated protein kinases (MAPKs) might regulate the modulation of HO-1, TrxR1, and Nrf2 expression. On the other hand, AAEE inhibited LPS-induced nitric oxide (NO) formation, without cytotoxicity. Suppression of NO formation was the result of AEEE-induced down-regulation of inducible NO synthase (iNOS). The suppression of NO and iNOS by AAEE might be modulated by their upstream transcription factor, nuclear factor (NF)-${\kappa}B$, and activator protein (AP)-1 pathways. Taken together, these results provide important new insights into the antioxidative and anti-inflammatory activities of A. arborescens. AAAEE might represent a promising material in the field of nutraceuticals.

THE EFFECT OF DIFFERENTIAL MODULATION OF N-METHYL-D-ASPARTATE RECEPTOR ON THE PROLIFERATION OF PRIMARY CULTURED NORMAL HUMAN ORAL KERATINOCYTES: DNA SYNTHESIS RATE ANALYSIS (N-methyl-D-aspartate 수용기의 다양한 조절이 일차 배양된 정상사람구강각화세포의 증식에 미치는 영향; DNA 합성율 평가)

  • Kim, In-Soo;Paik, Ki-Suk;Chang, Mi-Sook;Lee, Won;Lee, Seung-Pyo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • In the present study, I investigated the effects of N-methyl-D-aspartate (NMDA), arachidonic acid (AA), and Nitric Oxide Synthase Inhibitor (NOSI), alone or in combination, on the proliferation of cultured primary normal human oral keratinocytes (NHOK). The purpose of this study was therefore the preliminary study for the examination of the interaction between these agents and NHOK in order to elucidate the mechanisms by which epithelial growth and regeneration are regulated. NHOK were obtained from gingival tissue of 20 individuals aged 20 to 29, and third passage (P3) cells were used for this study. The DNA synthesis was measured by the BrdU assay. Addition of low concentration of AA ($1{\mu}M$) and high concentration of AA with NMDA group (NMDA+AA $10{\mu}M$) made DNA synthesis rate increase significantly at the early stage. Adding NNA ($10{\mu}M$) affected DNA synthesis rate to increase significantly in 4 hours. At the early stage, DNA synthesis was significantly active in the NOS-I with NMDA groups than in the control and the NMDA-only group, while it didn't become statistically meaningful in 24 hours. AA $1{\mu}M$ and NNA $10{\mu}M$ may induce the proliferation of the NHOK independently and NOS-I may induce the proliferation of the NHOK with NMDA. These reactions might be related to the NMDA receptor in the cell and the change of the intracellular calcium ion concentration.

Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves (건조방법에 따른 미선나무 잎의 항산화 및 항염증 효과)

  • Chang, Seong Jun;Jeon, Nam Bae;Park, Joo Won;Jang, Tae Won;Jeong, Jin Boo;Park, Jae Ho
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In this study, we evaluated the antioxidant activity and anti-inflammatory effects of Abeliophyllum distichum (A. distichum) leaves that were prepared via air-drying. Fresh and air-dried A. distichum leaves were examined via 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assay and measurements of the reducing power. The suppression effects on inflammation of the leaves were analyzed by a western blot and RT-PCR on LPS-induced RAW 264.7 cells. As a result, the antioxidant activity of the fresh leaves was found to be more effective than that of the air-dried leaves. Also, the fresh leaves were more effective in suppressing the protein and mRNA levels of iNOS and COX-2 than the air-dried leaves, thereby indicating the better anti-inflammatory effects. In addition, the contents of phenolic compounds and acteoside were analyzed by high-performance liquid chromatography (HPLC). The results showed that the acteoside content decreased with the use of the air-drying method, while there was no change in the content of phenolic compounds. Therefore, this study indicated that fresh A. distichum leaves potential antioxidant and suppression activities of various factors that are involved in the production of NO, which were found to be better than those of air-dried A. distichum leaves. These biological activities were also found to be independent of the content of phonolic compounds and were assumed to be directly or indirectly related to the content of acteoside.

Anti-inflammatory effects of the fermentation extracts consisting of soybean, red ginseng and Citrus Unshiu Peel (대두, 홍삼, 진피로 구성된 발효 추출물의 항염증 효능에 관한 연구)

  • Lee, Jong Rok;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.5
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : Fermentation of herbs has been known to be helpful in improving the immune systems and protecting body against disease. The present study was conducted to evaluate anti-inflammatory effects of the fermentation extracts (FE) consisting of soybean, red ginseng andCitrus UnshiuPeel in lipopolysaccharide (LPS)-activated Raw264.7 cells.Methods : FE were prepared by the fermentation withBacillus Subtilisand then by extraction with ethanol (95%; prepared by the fermentation process). Cell viability was measured by MTT assay. Nitric oxide (NO) production was measured in culture media by Griess assay. The expression of nuclear factor (NF)-κB and inhibitory kappa B alpha (IκBα) was determined by Western blot.Results : LPS-induced production of NO and PGE2was dose-dependently decreased by the treatment of FE in Raw264.7 cells. These suppressive effects of FE on NO and PGE2production were related to the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. FE inhibited LPS-induced production of pro-inflammatory cytokines, TNF-α, IL-6, and IL-1βin a dose-dependent manner. Furthermore, FE inhibited the NF-κB signaling pathway through the prevention of LPS-induced degradation of IκBαin cytosol and the nuclear translocation of NF-κB.Conclusions : These findings suggest that FE could have anti-inflammatory effects on LPS-induced inflammatory responses in macrophages.

Protective effects of Jinnoe-san, a novel herbal formula in experimental in vitro models of Parkinson's disease (파킨슨병의 세포모델에서 진뇌산(鎭腦散)의 보호효과)

  • Han, Sangtae;Jeong, Ji Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.537-551
    • /
    • 2017
  • Objectives : Jinnoe-san (JNS) is a novel herbal formula consisting of five oriental medicinal herbs including Polygalae Radix, Prunellae Spica, Perillae Herba, Betulae Cortex, and Lonicerae Flos. In this study, we investigated the effects and molecular mechanism of JNS on Parkinson's disease in vitro model. Methods : The effects of JNS on 1-methyl-4-phenylpyridinium ($MPP^+$)-induced cell death in SH-SY5Y cells were evaluated with a cell viability assay, flow cytometry, and western blots analysis. The effects of JNS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay, enzyme linked immunosorbent assays, and western blots analysis. Result : $MPP^+$-induced cell death in SH-SY5Y cells was significantly reduced by JNS pre-treatment in a dose-dependent manner. JNS inhibited the production of reactive oxygen species, mitochondria dysfunction, and apoptosis induced by $MPP^+$ in SH-SY5Y cells. Furthermore, JNS significantly activated Akt and ERK in SH-SY5Y cells and the ability of JNS to prevent mitochondria dysfunction by $MPP^+$ was antagonized by pre-treatment of LY294002 and PD98059, an Akt and ERK inhibitor, respectively. In addition, JNS inhibited LPS-induced NO and $PGE_2$ production as well as iNOS expression and secretion of TNF-${\alpha}$, pro-inflammatory cytokines without affecting the cell viability. JNS also suppressed LPS-induced ERK activation. Conclusions : These results demonstrate that JNS has a protective effect on the dopaminergic neurons against $MPP^+$-induced neurotoxicity and anti-inflammatory effect on the LPS-stimulated microglia. These findings provide evidences for JNS to be considered as a new prescription for treating Parkinson's disease.

Effects and molecular mechanisms of Noemyeong-san, a novel herbal prescription for treating Alzheimer's disease on microglia (미세아교세포에서 알츠하이머형 치매 치료 처방인 뇌명산(腦明散)의 효능 및 기전연구)

  • Han, Sangtae;Jeong, Ji-Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.471-481
    • /
    • 2017
  • Objectives : Noemyeong-san (NMS) is a novel herbal prescription composed of five oriental medicinal herbs including Prunellae Spica, Betulae Cortex, Foeniculi Fructus, Asiasari Radix, and Clematidis Radix for treating Alzheimer's disease. In the present study, we investigated the effects and molecular mechanisms of NMS on BV2 microglia to evaluate the potential action of this formula for preventing or treating neurodegenerative disease such as Alzheimer's disease. Methods : To determine the cytotoxicity of NMS on BV2 microglia, the MTT assay was performed. The effects of NMS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay and western blots for inflammatory mediator-related proteins, mitogen activated protein kinases (MAPKs), nuclear factor kappa B (NF-${\kappa}B$) pathway-related proteins, and heme oxygenase-1 (HO-1). Result : NMS inhibited induction of iNOS and COX-2 as well as NO production without affecting the cell viability in LPS-stimulated BV2 microglia. NMS also suppressed activation of ERK and p38 MAPK among main kinases of MAPKs as well as NF-${\kappa}B$ by LPS stimulation. Furthermore, NMS dose-dependently induced the expression of HO-1 and the inhibitory effect of NMS on the production of NO were blocked by pretreatment with an HO-1 inhibitor, Snpp. Conclusions : These results demonstrate that NMS has potent anti-neuroinflammatory effect on the LPS-stimulated microglia. These findings provide evidences for NMS to be considered as a new prescription for preventing or treating neurodegenerative disease such as Alzheimer's disease.

Antiproliferative effect of Chungjogupae-tang treatment was associated with the inhibition of prostaglandin E2 release and Telomere active in human lung carcinoma cells (인체폐암세포에서의 prostaglandin E2 생성과 Telomere 활성에 미치는 청조구폐탕의 영향에 관한 연구)

  • Kim, Hoon;Park, Dong-Il
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.26-39
    • /
    • 2006
  • Objective : The effect of water extract of Chungjogupae-tang (CJGPT) was investigated on the growth of human lung carcinoma A549 cells. Methods : MTT assay and fluorescent microscope performed to compare and examine the efficacy of CJGPT treatment on the cytostaticity of lung cancer cells in proportion to time and doses, and DAPI staining and Western blot analysis were used to examine their effect on apoptosis. In addition the quantitative RT-PCR was used to examine to lung cancer cells growth and Progtaglandin E2 and Telomerase activity were measured Results : Exposure of A549 cells to CJGPT resulted in the growth inhibition and apoptosis in a dose-dependent manner as measured by MTT assay and fluorescent microscope. The antiuoliferative effect by CJGPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CJGPT treatment resulted in an up-regulation of cyclin-dependent kinase inhibitor p21(WAF1/CIPl) in a p53-independent fashion. We found that CJGPT treatment decreased the levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthease (iNOS) expression without significant changes in the expression of COX-1, which was correlated with a decrease in protaglandin E2 (PGE2) synthesis. CJGPT treatment also inhibited the levels of human telomerase reverse transcriptase (hTERT) and telomerase-associated protein (TEP)-1 mRNA expression, however the activity of telomerase was slightly increased by CJGPT treatment. Conclusion : These findings suggested that CJGPT-induced inhibition of human lung carcinoma A549 cell growth was connected with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of CJGPT.

  • PDF

Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions

  • Kim, Jae-Yoon;Kim, Kyoung-Hwa;Kwag, Eun-Hye;Seol, Yang Jo;Lee, Yong Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.2
    • /
    • pp.70-83
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. Methods: RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results: Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor ${\kappa}B$ ($NF-{\kappa}B$) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin $E_2$ [$PGE_2$], interleukin $[IL]-1{\beta}$, and IL-6) and nitrite production. Conclusions: Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.