• Title/Summary/Keyword: iNOS, TNF-$\alpha$

Search Result 554, Processing Time 0.024 seconds

Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

  • Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin $E_2$ ($PGE_2$) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.

Anti-inflammatory effect of ozonated krill (Euphausia superba) oil in lipopolysaccharide-stimulated RAW 264.7 macrophages

  • Kim, Hong-Deok;Lee, Soo-Bin;Ko, Seok-Chun;Jung, Won-Kyo;Kim, Young-Mog;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.15.1-15.9
    • /
    • 2018
  • Background: Inflammation has been known to associate with many human diseases. The objective of this study was to evaluate an anti-inflammatory effect of ozonated krill (Euphausia superba) oil, which was prepared by the treatment of krill oil using ozone gas. The anti-inflammatory activity was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Results: Ozonated krill oil significantly inhibited nitric oxide (NO) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophages. Ozonated krill oil also reduced the mRNA expression of inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 macrophages. To elucidate the mechanism underlying the anti-inflammatory activity of ozonated krill oil, we evaluated the effects of ozonated krill oil on the activation of mitogen-activated protein kinases (MAPKs) pathway. Ozonated krill oil suppressed the LPS-stimulated phosphorylation of p38 MAPK and c-Jun N-terminal kinases (JNK). Conclusion: This study revealed that the ozonated krill oil exhibited an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages. To the best of our knowledge, this is the first report that ozonated krill oil suppressed pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 macrophages by inhibiting the phosphorylation of p38 MAPK and JNK.

Screening and Characterization of Lactobacillus casei MCL Strain Exhibiting Immunomodulation Activity

  • Choi, Jae-Kyoung;Lim, Yea-Seul;Kim, Hee-Jin;Hong, Yeong-Ho;Ryu, Buom-Yong;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.635-643
    • /
    • 2012
  • As an appraisal for the application of a new starter culture, more than 200 lactic acid bacteria strains were isolated from raw milk and healthy human feces. The strains showing excellent growth and acid production ability in 10% skim milk media were selected and identified as Lactobacillus casei based on the results of their API carbohydrate fermentation patterns, as well as 16S rDNA sequence analysis. To assess the effect of L. casei strains on irritable bowel disease (IBD), the inhibitory effect of the selected strains against the nitric oxide (NO) production of lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was measured. Among the tested L. casei strains, L. casei MCL was observed to have the greatest NO inhibitory activity. Additionally, L. casei MCL was found to inhibit mRNA expression of pro-inflammatory cytokines (interleukin-$1{\beta}$, IL-6, TNF-${\alpha}$), as well as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) involved in pathophysiologic processes such as inflammation. The mRNA expression of anti-inflammatory cytokines, including IL-10 and transforming growth factor-$1{\beta}$ (TGF-${\beta}$) of L. casei MCL, was confirmed using quantitative real-time PCR. In conclusion, L. casei MCL showed decreases in the expression of pro-inflammatory cytokines and up-regulated expression of the anti-inflammatory cytokine.

L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses (L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석)

  • Yi, Young-Su
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Enhancement of the Antioxidant and Anti-inflammatory Activity of Hizikia fusiforme Water Extract by Lactic Acid Bacteria Fermentation (유산균 발효에 의한 톳 (Hizikia fusiforme) 추출액의 항산화 및 항염증 활성 증가)

  • Song, Ho-Su;Eom, Sung-Hwan;Kang, Young-Mi;Choi, Jong-Duck;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • We previously reported that fermentation by Lactobacillus brevis LB-20 isolated from Kimchi resulted in improvement of the sensory quality of Hizikia fusiforme water extract. This study was conducted to evaluate the possible application of lactic acid bacteria fermentation to improve the functional qualities of H. fusiforme extract. L. brevis LB-20 was inoculated and cultivated in H. fusiforme extract. The antioxidant and anti-inflammatory activities of extract were then assayed both before and following fermentation for two days. Antioxidant activity was determined by assaying levels of radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, superoxide, and alkyl radical. Lactic acid bacterial fermentation of H. fusiforme extract resulted in enhancement of antioxidant activity. The greatest enhancement of antioxidant activity was seen in the hydroxyl radical scavenging assay that incorporated 0.5 mg/mL of raw and fermented H. fusiforme extract. Fermented extract exhibited greater (21.95%) inhibition of nitric oxide synthesis than did raw extract (14.66%) at a concentration of 1 mg/mL. The fermented extract exerted its potent anti-inflammatory activity via attenuation of expression of inflammation-related cytokine proteins (TNF-${\alpha}$ and iNOS).

The Efficiency of Deer Antler Herbal Acupuncture on Modulation and Prevention of IL-1 Mediated Activation in Rat Chondrocytes at a Receptor Level

  • Kim, Woo-Young;Lee, Seung-Deok;Kim, Kyung-Ho;Baek, Seung-Tae;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.113-123
    • /
    • 2006
  • Objectives : Deer antler Herbal-Acupuncture (DHA) solution represents one of the most commonly used medicine to treat rheumatoid arthritis. But, mechanisms of its antiarthritic activities are still poorly understood. Identification of common DHA aqua-acupuncture capable of affording protection or modulating the onset and severity of arthritis may have important human health implications. Results : We determined if DHA could prevent the binding of $IL-1{\beta}$ to its cellular receptors. DHA addition to rat chondrocytes treated with $IL-1{\beta}$ or with reactive oxygen species(ROS) prevents the activation of proteoglycan synthesis. After treatment with $IL-1{\beta}$, DHA increased the expression of mRNA encoding the type II $IL-1{\beta}$ receptor. These results emphasize the potential role of two regulating proteins of the $IL-1{\beta}$ signaling pathway that could account for the beneficial effect of DHA in osteRArthritis. The present study also identifies a novel mechanism of DHA-mediated anti-inflammatory activity. Conclusion : It is shown that DHA inhibits both $IL-1{\beta}-$ and $TNF-{\alpha}-induced$ NO production in normal human articular chondrocytes. The observed suppression of IL-1-induced NO production is associated with inhibition of inducible NO synthase(iNOS) mRNA and protein expression. In addition, DHA also suppresses the production of IL-1-induced cyclooxygenase-2 and IL-6. The constitutively expressed cyclooxygenase-1, however, was not affected by the sugar. These results demonstrate that DHA expresses a unique range of activities and identifies a novel mechanism for the inhibition of inflammatory processes.

  • PDF

Anti-inflammatory Effects of Enzymatic Extract from Ecklonia cava on TPA-induced Ear Skin Edema

  • Ahn, Ginnae;Park, Eun-Jin;Kim, Dae-Seung;Jeon, You-Jin;Shin, Tae-Kyun;Park, Jae-Woo;Woo, Ho-Chun;Lee, Ki-Wan;Jee, Young-Heun
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.745-750
    • /
    • 2008
  • Anti-inflammatory potential of the enzymatic extract prepared by Kojizyme (ECK), a component of brown seaweeds Ecklonia cava (Alariaceae, Phaeophyta) in vivo was investigated. For the application of mouse ear edema model, 12-O-tetradecanoylphorbol acetate (TPA) was used, a topical inducer of a long-lasting inflammatory response. Our results demonstrated that ECK inhibited ear edema when topically applied to mouse ear skin. In histological evaluation, the inhibition activity of ECK on TPA-induced inflammation is similar to that of dexamethasone, although less strong. In addition, the mRNA expression levels of IL-$1{\beta}$, IFN-$\gamma$, TNF-$\alpha$, and cyclooxygenase-2 (COX2) and the immunoreactivity to inducible nitric oxide synthase (iNOS) and COX2 expressed mainly in inflammatory cells were down-regulated by ECK. These results indicate that ECK has anti-inflammatory effects through the inhibition of Th1 cytokines and 2 inducers of inflammation in TPA-induced ear skin edema.

Review on the Acne Related Articles Published in Korean Medical Journals - Focusing on Experimental Studies Published after 2005 - (국내 한의 학술지에 게재된 여드름 관련 연구 동향- 2005년 이후 발표된 실험적 연구 논문 중심으로 -)

  • Yoon, Hee-Jung;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.1
    • /
    • pp.113-127
    • /
    • 2015
  • Objectives: This study was performed to analyze the trend of acne-related experimental studies in Korean medicine. Methods: We searched 17 articles related with experimental study of acne, published Korean medical journals from 2005 to 2014. We classified all articles according to the journal and checked on the kind of herbs. All articles were categorized into two types: cell experimental study and animal experimental study. Results: 1. Total 17 papers were searched; 7 articles (41.2%) were published in the Journal of Korean Medical Ophthalmology, Otolaryngology, Dermatology, 4 articles (23.5%) were published in the Journal of Korean Institute of Pharmacopuncture, 3 articles (17.6%) were published in Korean Journal of Oriental Physiology and Pathology, 2 articles (11.8%) were published in Korean Journal of Herbology, and 1 article (5.9%) was published in the Journal of Korean Medicine. 2. Total 17 kind of herbs were used in the studies; 10 articles (58.8%) used single herb, 7 articles (41.2%) used complex herbs. 3. Total 17 articles were categorized 2 types; 16 cell experimental studies (94.1%), 1 animal experimental study (5.9%). 4. Experimental researches were mainly investigated using Raw 264.7 cell line and P. acnes. The levels of NO, iNOS, $TNF-{\alpha}$, PGE, COX-2, $IL-1{\beta}$, IL-6, NF-kB were analyzed to confirm of herbs' antibacterial, anti-inflammatory, antioxidant activity. Conclusions: Searching for natural antibiotics, it is needed to do experimental studies continuously, and also needed to diversify the kind herbs and experimental bacteria.

The Inhibitory Effects of Yang Geouk San Hwa-Tang on LPS-stimulated inflammation in RAW264.7 macrophage cells (양격산화탕(凉膈散火湯)의 항염증(抗炎症) 효과에 대한 연구)

  • Tak, Mi-Jin;Tark, Myoung-Rim;Kang, Kyoung-Hwa;Ko, Woo-Shin;Yoon, Hwa-Jung
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.1
    • /
    • pp.118-134
    • /
    • 2010
  • Objective: Yang Geouk San Hwa - Tang (YGSHT) has been widely used in Sasang Constitutional Medicine of Korea for treatment of acute inflammatory symptom, such as palatine tonsillitis, polydipsia, headache, papule, pimple however, the mechanism of its anti-inflammatory activity has not been clarified. In this study, therefore, we investigated the mechanism of the inhibitory effect of YGSHT on LPS-induced inflammation. Materials and methods: The effect of YGSHT was analyzed by ELISA, RT-PCR and Western blotting in LPS-stimulated RAW264.7 cells. Results: We found that YGSHT suppressed not only the production of pre-inflammatory cytokines (IL-$1{\beta}$ and TNF-$\alpha$), the generation of nitric oxide (NO) and prostaglandin E (PGE)2, but also the mRNA expression of pre-inflammatory cytokines, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2. Furthermore, YGSHT was shown to inhibit the phosphorylation of ERK1/2 and JNK1/2 and the activation and translocation of NF-kB from cytosol to nuclear in LPS-stimulated RAW264.7 cells. Conclusions: These results suggest that YGSHT exerts an anti-inflammatory effect through the regulation of the ERK1/2 and JNK1/2 pathway and NF-kB pathway, thereby decreasing production of pre-inflammatory cytokines, NO, and PGE2.