• Title/Summary/Keyword: iFFT

Search Result 113, Processing Time 0.018 seconds

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

Characteristics of EMG Median Frequency and Torque During Isometric Back Extension Exercises (등척성 요추 신전운동 시 중앙주파수와 토크의 특성)

  • Kang, S. J.;Park, S. J.;Jang, K.;Park, K. H.;Kwon, O. Y.;Kim, Y. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • Localized muscle fatigue can be identified by a downward shift of the EMG frequency typically represented by a fall in the median frequency The Present experimental study was Performed to investigate the time change of the median frequency and the muscle torque during maximal isometric back extension exercises at different exercise angles (0$^{\circ}$, 12$^{\circ}$, 36$^{\circ}$and 72$^{\circ}$) Twenty heath subjects (mean age : 24.35 $\pm$ 2.70) were Participated in this study Median frequency was extracted from EMG signals by employing the fast Fourier transform. Initial median frequency and the slope of median frequency was not significantly correlated with the muscle torque. Pearson's Product moment correlation was used to quantify the relationship between slopes of median frequency and torque. The results may suggest that the exorcise angle during maximal isometric back extension exercises does not affect the slopes of the median frequency and torque, and y-intercept of the median frequency among exercise angles There was no significant correlation between slopes of median frequency and torque. But there was a moderate correlation between median frequency and torque at each exercise angle. In conclusion, the exercise angle during maximal isometric back extension exercise is not a direct effect on slopes of median frequency and torque. But results showed that the shift of median frequency and torque shift were highly correlated in all subjects.