• Title/Summary/Keyword: i-Manufacturing

Search Result 1,364, Processing Time 0.029 seconds

A Study of Custom Embroidered Souvenir Manufacturing System Development (맞춤형 자수기념품 제작시스템 개발에 관한 연구)

  • Jang, Saeyeob;Kim, Taejoo;Shin, Junhee;Jeong, Eunjin
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.45-49
    • /
    • 2013
  • Instant custom embroidered souvenir manufacturing system was studied. Recently customers want to get individually specialized souvenir. We present a modular manufacturing system and implementation of image processing, conversion of punching data. The manufacturing system consist of main module, photographing module and U/I module. We can change the system easily through modularization. Image Processing was necessary for making punching data. We developed sketch typed image processing and image processing which used brightness. Brightness type is suitable for instant embroidered souvenir. This study showed that fusion of embroidery technology and image processing technology can make a new business successfully.

  • PDF

Priority Scheduling for a Flexible Job Shop with a Reconfigurable Manufacturing Cell

  • Doh, Hyoung-Ho;Yu, Jae-Min;Kwon, Yong-Ju;Lee, Dong-Ho;Suh, Min-Suk
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • This paper considers a scheduling problem in a flexible job shop with a reconfigurable manufacturing cell. The flexible job shop has both operation and routing flexibilities, which can be represented in the form of a multiple process plan, i.e. each part can be processed through alternative operations, each of which can be processed on alternative machines. The scheduling problem has three decision variables: (a) selecting operation/machine pairs for each part; (b) sequencing of parts to be fed into the reconfigurable manufacturing cell; and (c) sequencing of the parts assigned to each machine. Due to the reconfigurable manufacturing cell's ability of adjusting the capacity, functionality and flexibility to the desired levels, the priority scheduling approach is proposed in which the three decisions are made at the same time by combining operation/machine selection rules, input sequencing rules and part sequencing rules. To show the performances of various rule combinations, simulation experiments were done on various instances generated randomly using the experiences of the manufacturing experts, and the results are reported for the objectives of minimizing makespan, mean flow time and mean tardiness, respectively.

Holographic Recording Versus Holographic Lithography

  • Seungwoo Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.638-654
    • /
    • 2023
  • Holography is generally known as a technology that records and reconstructs 3D images by simultaneously capturing the intensity and phase information of light. Two or more interfering beams and illumination of this interference pattern onto a photosensitive recording medium allow us to control both the intensity and phase of light. Holography has found widespread applications not only in 3D imaging but also in manufacturing. In fact, it has been commonly used in semiconductor manufacturing, where interference light patterns are applied to photolithography, effectively reducing the half-pitch and period of line patterns, and enhancing the resolution of lithography. Moreover, holography can be used for the manufacturing of 3D regular structures (3D photonic crystals), not just surface patterns such as 1D or 2D gratings, and this can be broadly divided into (i) holographic recording and (ii) holographic lithography. In this review, we conceptually contrast two seemingly similar but fundamentally different manufacturing methods: holographic recording and holographic lithography. We comprehensively describe the differences in the manufacturing processes and the resulting structural features, as well as elucidate the distinctions in the diffractive optical properties that can be derived from them. Lastly, we aim to summarize the unique perspectives through which each method can appear distinct, with the intention of sharing information about this field with both experts and non-experts alike.

The Effect of Green Accounting on Corporate Sustainability and Financial Performance

  • ENDIANA, I Dewa Made;DICRIYANI, Ni Luh Gd Mahayu;ADIYADNYA, Md Santana Putra;PUTRA, I Putu Mega Juli Semara
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.731-738
    • /
    • 2020
  • Though their activities, companies have an impact on environmental problems and nature conservation. The accounting sector can play a role in environmental conservation efforts related to environmental costs, and the implemention of the Corporate Sustainability Management System (CSMS) could be a key factor that can improve the company's financial performance. This study aims to determine how green accounting through the application of CSMS can improve the financial performance of manufacturing companies in Indonesia, a developing country. The sampling method used was purposive sampling, while the research sample consisted of 38 companies that had followed PROPER and were indexed on the IDX. Data were analyzed using the Structural Equation Modeling (SEM) method known as the Partial Least Square (PLS) method. The results of this study indicate that manufacturing companies in Indonesia are able to implement green accounting by allocating appropriate environmental costs by earmarking a portion to carry CSMS implementation so as to improve financial performance. People in Indonesia consider that manufacturing companies that have good company rankings in the evaluation program for company performance ratings in environmental management run by the Indonesian Ministry of Environment are in a position to generate customer loyalty, especially in financial performance.

Optimum-selection in the Welding Process Variable for Torch-rotation Method of Automation Welding-machine System (토치 회전식 자동용접 시스템의 용접공정변수 최적선정)

  • 김재열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.92-101
    • /
    • 1997
  • The purpose of this welding process of the exclusive welding-machine using welding torch-rotation type is to develop a mechanism which can solve the problem of twisting of welding wires and cables. The technique was developed by revising the torch position and smooth controlling of both the normal and reverse rotation. Some of the advantages of using the torch-rotation type apply to the work-rotation technique are the practical uses of increased work space and link work with the factory automation system. Do apply the welding process, I designed and made a special unit so called torch part in order to solve the problems of kinematical. And I made a control panel which can manipulate the progress of the entire process at the work shop. Even if it will be applied to another kind of axle casing's welding work, this process can be utilized if other sizes of the fixed pin and work part is produced and changed. The development of this exclusive welding-machine could reduce the manpower of skilled welding labor and increase productivity and better quality product in comparison to the handmade product.

  • PDF

Effects of Technology and Innovation Management and Total Factor Productivity on the Economic Growth of China

  • LEE, Jung Wan;XUAN, Ye
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.63-73
    • /
    • 2019
  • The paper aims to investigate relationships between technology and innovation management, total factor productivity and economic growth in China. By comparing the trends in total factor productivity growth of industrialized economies (i.e. OECD), this study intends to showcase the importance of total factor productivity progress in the Chinese economy. The study employs time series data of an annual basis for the period from 1977 to 2016 retrieved from the World Development Indicator. The study employs unit root test, cointegration test, fully modified least squares estimation method, canonical cointegrating regression and dynamic least squares estimation method to test the hypotheses. The results of the cointegrating regression analysis show that manufacturing growth leads to an increase of total factor productivity in the short-run in China. The findings of the study suggest that manufacturing (i.e. technology and product innovation) is positively related to the increase of total factor productivity in the short-run and total output growth in the long-run. The findings suggest that promoting technology and innovation management and supporting R&D subsidies may reduce the marginal cost of conducting R&D and increase the rate of technology and innovation management and R&D activity and therefore, the total factor productivity growth rate.

Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(I) (유전자 알고리듬을 이용한 공자기계구조물의 정강성 해석 및 다목적 함수 최적화(I))

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.443-448
    • /
    • 2000
  • In this paper, multiphase optimization of machine structure is presented. The goal of first step is to obtain (i) light weight, (ii) rigidity statically. In this step, multiple optimization problem with two objective functions is treated using Pareto Genetic Algorithm. Where two objective functions are weight of the structure, and static compliance. The method is applied to a new machine structure design.

  • PDF

Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods (쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형)

  • Seo, Seokjun;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

A curvature profilometry using white-light (백색광을 이용한 곡률 측정법 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.81-86
    • /
    • 2008
  • I present a 3-D profiler specially devised for the profile measurement of specular surfaces that requires precision shape accuracy up to a few nanometer. A profile is reconstructed from the curvature of a test part of the surface at several locations along a line. The local curvature data are acquired with White-light Scanning Interferometry. Test measurement proves that the proposed profiler is well suited for the specular surface inspection like precision mirror.

  • PDF

Tolerance allotment with Design Centering considering Assembly Yield (조립수율을 고려한 공차할당 및 가공중심 결정)

  • 이진구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The purpose of this research was developing an integrated way to solve two typical tolerance optimization problem i.e. optimal tolerance allotment and design centering. A new problem definition design centering-tolerance allotment problem (DCTA) was proposed here for the first time and solved. Genetic algorithm and coarse Monte Carlo simulation were used to solve the stochastic optimization problem. Optimal costs were compared with the costs from the previous optimization strategies Significant cost reductions were achieved by DCTA scheme.

  • PDF