• 제목/요약/키워드: hysteretic energy

검색결과 353건 처리시간 0.021초

수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동 (Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity)

  • Park, Byong-Jeong;Song, In-Hawn
    • 한국지진공학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-15
    • /
    • 2004
  • 고층의 강 모멘트저항골조에 대한 지진 응답을 살펴보기 위해서 동적해석을 실시하였다. 구조물은 세가지의 다른 설계절차로 의도적으로 설계하였고 그 세가지의 개념은 강도 지배설계, 강기둥-약보 지배설계, 횡변위 지배설계이다. 그렇게 설계한 구조물이 각각 질량비정형이 존재하도록 하여 횡변위, 소성한지, 이력에너지 입력 및 요구응력에 대해서 토론하였다. 미래에 설계에의 응용을 위해서 최대 지반가속도로 표현한 두 등급의 지진 하중을 이용해서 이력에너지 입력요구 곡선을 제시하였다.

Simplified Estimation Method for Collective Uncertainty-Propagations of Hysteretic Energy Dissipating Device's Properties

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1508-1524
    • /
    • 2018
  • Hysteretic energy dissipating devices (HEDDs) have been increasingly applied to building construction to improve the seismic performance. The seismic responses of such damped structures are significantly affected by HEDD's structural properties. An accurate investigation on the propagation of HEDD's structural properties is required for reasonable evaluation of the seismic performance of a structure. This study aims to develop simplified methods that can estimate the collective uncertainty-propagation to the seismic response of damped structures employing HEDDs. To achieve this, three- and six-story steel moment-resisting frames were selected and the propagations of the individual HEDD's property-uncertainties were evaluated when they are subjected to various levels of seismic demand. Based on the result of individual uncertainty-propagations, a simplified method is proposed to evaluate the variation of seismic response collectively propagated by HEDD's property-uncertainties and is verified by comparing with the exact collective uncertainty-propagation calculated using the Monte Carlo simulation method. The proposed method, called as a modified SRSS method in this study, is established from a conventional square root of the sum of the squares (SRSS) method with the relative contributions of the individual HEDD's property-uncertainty propagations. This study shows that the modified SRSS method provides a better estimation than the conventional SRSS method and can significantly reduce computational time with reasonable accuracy compared with the Monte Carlo simulation method.

Study on energy dissipation mechanism of cross-shaped BRB with built-up angle steel

  • Yanmin Yang;Ying Xiong;Peng Wang;Xiangkun Meng;Tianyuan Cai
    • Earthquakes and Structures
    • /
    • 제25권2호
    • /
    • pp.113-123
    • /
    • 2023
  • A novel type of buckling restrained brace with built-up angle steel was developed. The core segment was formed by welding angle steel, and the middle section was reduced by cutting technology to solve the problem that the end of BRB was easy to buckle. The experimental program has been undertaken to study the performance of BRBs with different unbonded materials (silica gel, kraft paper) and different filler materials (ordinary concrete, full light-weight concrete). Four specimens were designed and fabricated for low cycle reciprocating load tests to simulate horizontal seismic action. The failure mode, hysteretic curves, tension-compression unbalance coefficient and other mechanical parameters were compared and analyzed. The finite element software ABAQUS was used to conduct numerical simulation, and the simulation results were compared with the experimental phenomena. The test results indicated that the hysteretic curve of each specimen was plump. Sustaining cumulative strains of each specimen was greater than the minimum value of 200 required by the code, which indicated the ductility of BRB was relatively good. The energy dissipation coefficient of the specimen with silica gel as unbonded material was about 13% higher than that with kraft paper. The experimental results were in good agreement with the simulation results.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

강재판형 이력댐퍼 연결부재와 RC벽체의 접합상세에 따른 구조거동 (Structural Behavior of Joints between the Hysteretic Steel Damper Connector and RC Wall Depending on Connection Details)

  • 강인석;허무원
    • 콘크리트학회논문집
    • /
    • 제24권6호
    • /
    • pp.737-744
    • /
    • 2012
  • 강재형 댐퍼는 주로 철골구조에서 많이 사용되어 왔으나 최근에 들어 철근콘크리트 건물에도 사용빈도가 증가하는 추세이다. 철근콘크리트 건물에 강재이력댐퍼를 적용하기 위해서는 댐퍼의 접합부재가 댐퍼의 지지능력을 보 및 벽체로 전달하기에 적합한 강도와 강성을 지녀야만 한다. 하지만 균열로 인한 철근콘크리트 요소의 손상은 부득이한 것으로, 댐퍼로부터 지지부재로의 하중전달 메커니즘과 댐퍼 지지부재 이력특성의 규명은 이러한 댐퍼의 거동을 평가하는데 매우 중요하다. 이에 이 연구에서는 EaSy 댐퍼와 같은 강재판형 이력댐퍼의 지지부재와 RC벽체와의 접합상세를 대상으로 실험을 실시하였다. 실험 결과 전단과 관련된 균열의 양과 패턴을 제외하고는 모든 실험체의 파괴패턴은 거의 동일한 것으로 나타났으며, 잘 분산된 균열을 지닌 HD-3 실험체가 에너지소산능력, 강성저하 그리고 강도저하 측면에서 좋은 거동을 보여주었다.

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

압전 진동 에너지 수확 장치의 전기 유발 감쇠 특성 및 최대 전력 발생 조건 (Electrically Induced Damping Characteristics and a Relevant Requirement for the Maximum Power Generation in Piezoelectric Vibration Energy Harvesters)

  • 김재은
    • 한국소음진동공학회논문집
    • /
    • 제25권6호
    • /
    • pp.406-413
    • /
    • 2015
  • The piezoelectric coupling in piezoelectric vibration energy harvesters with load resistance induces electrical damping as well as increase in the system stiffness. Starting from analytically deriving the explicit relations through governing equations in the frequency domain, this work identifies the characteristics of the electrically induced damping mechanism and shows that the electrically induced damping serves as a structural hysteretic damping on condition that a piezoelectric vibration energy harvester is excited at its short-circuit resonant frequency and its load resistor is optimally impedance- matched at the same time. Finally, it is analytically verified that the equivalence of a mechanical and an electrically induced damping ratio is required for the maximum power generation at a load resistor, which was claimed in some literature.

지반 운동과 구조물 특성에 따른 구조물의 에너지 요구량 (Seismic Energy Demand of Structures Depending on Ground Motion Characteristics and Structural Properties)

  • 최현훈;김진구
    • 한국지진공학회논문집
    • /
    • 제9권3호
    • /
    • pp.59-68
    • /
    • 2005
  • 에너지 설계법은 지진에 의해 누적된 손상과 구조물의 이력거동에 의한 영향을 직접적으로 고려할 수 있기 때문에 현행 내진설계 기준보다 더 합리적이다. 그러나 지반운동과 구조물 특성에 따른 에너지 응답에 대한 관련 연구자들의 합의가 아직 도출되지 않고 있다. 따라서 본 연구에서는 에너지 요구에 대한 지진하중과 구조물 특성의 영향을 다른 지반조건에서 계측된 100개의 지진기록을 이용하여 평가하고 기존 연구결과와 비교하였다. 해석 결과에 따르면 연성비와 지반조건은 입력에너지에 상당한 영향을 주는 것으로 나타났다. 입력에너지에 대한 이력에너지비는 연성비, 감쇠비와 강한 지진파의 지속시간에 많은 영향을 받았지만 지반조건에 따른 변화는 작았다.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.