• Title/Summary/Keyword: hysteresis current control

Search Result 173, Processing Time 0.026 seconds

Current Control for an AFE Rectifier Using Space Vector PWM (공간벡터변조방식에 의한 AFE정류기의 전류제어)

  • Jeon, Cheol-Hwan;Hur, Jae-Jung;Yoon, Kyoung-Kuk;Yoo, Heui-Han;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.498-503
    • /
    • 2019
  • Electric propulsion ships are gaining widespread interest in the marine industry owing to extreme air pollution concerns. Consequently, several studies are actively being conducted for improving the power quality. Various methods have been developed that incorporate passive filters, notch filters, and active filters for reducing the harmonic content in the input current of a conventional diode front end rectifier. Among such filters, the active front end (AFE) rectifier is considered as an excellent technology. In this paper, current control for an AFE rectifier employing space vector PWM (Pulse Width Modulation) is proposed. Conventional current control methods for the AFE rectifier, hysteresis, SPWM (Sinusoidal Pulse Width Modulation), and SVPWM (Space Vector Pulse Width Modulation) were simulated by employing the PSIM software tool for analysis and comparisons. The results corroborate that SVPWM has the simplest structure and provides the best performance.

Validation of Efficiency Analysis for Independent Multi-Phase BLDC Motor Using Hysteresis PWM Current Control Method (Hysteresis PWM 전류 제어 기법을 사용한 독립 다상 BLDC 전동기의 효율 해석 유효성 검증)

  • Lee, Junewon;Kong, Yeongkyung;Park, Sunjung;Choi, Hoyong;Hong, Sungyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.604-610
    • /
    • 2014
  • In this paper, the analysis and the experiment of independent multi-phase BLDC motor are performed. The back-emf, iron loss analysis are performed by the finite element method and compared with experimental results. The independent multi-phase BLDC motor is manufactured and to measure the efficiency of the motor, evaluation system is also manufactured including the load generator. By comparing the analytic and the experimental results, the effectiveness of the analysis model is verified when calculating the efficiency of the motor.

Adaptive Sliding Mode Control with Enhanced Optimal Reaching Law for Boost Converter Based Hybrid Power Sources in Electric Vehicles

  • Wang, Bin;Wang, Chaohui;Hu, Qiao;Ma, Guangliang;Zhou, Jiahui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.549-559
    • /
    • 2019
  • This paper proposes an adaptive sliding mode control (ASMC) strategy with an enhanced optimal reaching law (EORL) for the robust current tracking control of the boost converter based hybrid power source (HPS) in an electric vehicle (EV). A conventional ASMC strategy based on state observers and the hysteresis control method is used to realize the current tracking control for the boost converter based HPS. Then a novel enhanced exponential reaching law is proposed to improve the ASMC. Moreover, an enhanced exponential reaching law is optimized by particle swarm optimization. Finally, the adaptive control factor is redesigned based on the EORL. Simulations and experiments are established to validate the ASMC strategy with the EORL. Results show that the ASMC strategy with the EORL has an excellent current tracking control effect for the boost converter based HPS. When compared with the conventional ASMC strategy, the convergence time of the ASMC strategy with the EORL can be effectively improved. In EV applications, the ASMC strategy with the EORL can achieve robust current tracking control of the boost converter based HPS. It can guarantee the active and stable power distribution for boost converter based HPS.

A Comparative Analysis of the Indirect Field-Oriented Control with a Scalar Method for IM Speed Control (벡터제어와 스칼라제어에 의한 유도전동기의 속도제어성능 비교)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.91-98
    • /
    • 1995
  • To control speed or torque of induction motors, scalar control method that regulates the value of stator current had been used conventionally. But, vector control method which contrls the direction and the value of stator current at the same time has been introduced lately and employed widely. This paper describes comparative analyses of above two methods by computer simulation. As a result of the simulation, both methods showed good responses for high speed, but, vector control method characterized much better performance for low speed and sinusoidal input.

  • PDF

Servo Control System of Permanent Magnet Synchronous Motor Using Space Voltage Vector PWM (공간전압벡터 PWM을 이용한 영구자석형 동기전동기의 서보제어 시스템)

  • Won, Euy-Youn;Ra, Sang-Hoon;Yoon, Duck-Yong;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.290-293
    • /
    • 1994
  • This paper proposes a servo control system of SPMSM (Surface-mounted Permanent Magnet Synchronous Motor) which essentially uses vector control method. The control system is composed of the PI controller for speed control and the current controller using space voltage vector PWM technique. The high-speed processing of algorithm for vector control and inverter switching for PWM is carried out by TMS320C31 DSP and IGBT module, respectively. The proposed scheme for 2.2kW SPMSM is verified through digital simulations and experiments, which show higher performance than that of traditional hysteresis current control technique.

  • PDF

Position Control of Permanent Magnet Synchronous Motor Using Model Following (영구자석 동기전동기의 모델 추종 위치제어)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Ki-Yong;Lee, I.Y.;Yoon, M.K.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.160-163
    • /
    • 1991
  • Permanent Magnet Synchronous Motor(PMSM) has merits in both simple electrical controllability of dc motor and mechanical reliability of ac motor by applying vector control. The vector control method orients the armature current phasor to be perpendicular to the permenant magnet rotor flux in a two-axis coordinate frame, and provides control characteristics that are similar to those of separately excited dc motors. This paper presents a simple model following scheme for position control of PMSM fed by hysteresis current-controlled PWM inverter. The simulation results show the validity of the proposed control method.

  • PDF

A NOVEL NEURAL-NETWORK BASED CURRENT CONTROL SCHEME FOR A THREE-LEVEL CONVERTER

  • Choi, J.Y.;Song, J.H.;Choy, I.;Gu, S.W.;Huh, S.H.
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.352-356
    • /
    • 1997
  • This paper present the design of a novel neural-network (NN) based pulse-width modulation (PWM) techniques for a three-level power converter of electric trains along with nonlinear mapping of essential switching patterns and fault tolerance, which are inherent characteristics of NNs. Considering the importance of safety, power factor and harmonics of electric train power converters, two-level type and three-level type of power converters using NNs are precisely investigated and compared in computer simulation. A computer simulation shows that a new current control scheme provides an improved performance over a fixed-band hysteresis current control in many aspects.

  • PDF

Optimal Switching Pattern and Harmonic Analysis for Single-Phase Current-Controlled Converter (단상 전류제어형 컨버터의 최적 스위칭패턴과 고조파 해석)

  • Park, Ki-Won;Woo, Myeong-Ho;Jeong, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.121-125
    • /
    • 1993
  • This paper proposes two kinds of novel switching method for a single phase current-controlled voltage-type ac-to-dc converter. Proposed are modifications of the conventional hysteresis current control, and are named by the half suppressing method and unipolar method, respectively. The first one suppresses an inactive half of the four switching signals and uses active another half for current control. The second method uses only one, a quarter of switching signals suppresed the others. Both the simulation and experimental results show that proposed methods are more efficient in switch utilization and have comparable or better performance when compared with conventional method.

  • PDF

Torque Ripple Reduction of SRM using DITC (직접 순시 토크 제어에 의한 SRM 토크 리플 억제)

  • Lee, Zhen-Guo;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.87-90
    • /
    • 2006
  • The direct instantaneous torque control (DITC) method is presented in this paper, which enables torque to be generated during all region and instantaneous torque control to be possible. The hysteresis control mode with the compared value between given torque and instantaneous output torque as input is applied in respect region. The output torque function, that is instantaneous output torque with the variation of current and position of rotor, is achieved by experiment. In this control mode the torque subsection function and current control are not needed. The turn on angle with variation of load torque and speed is only selected and turn off angle can be neglected. The validity of method is tested by simulation and experiment.

  • PDF

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF