• Title/Summary/Keyword: hypomethylation

Search Result 40, Processing Time 0.053 seconds

Alu Hypomethylation in Smoke-Exposed Epithelia and Oral Squamous Carcinoma

  • Puttipanyalears, Charoenchai;Subbalekha, Keskanya;Mutirangura, Apiwat;Kitkumthorn, Nakarin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5495-5501
    • /
    • 2013
  • Background: Alu elements are one of the most common repetitive sequences that now constitute more than 10% of the human genome and potential targets for epigenetic alterations. Correspondingly, methylation of these elements can result in a genome-wide event that may have an impact in cancer. However, studies investigating the genome-wide status of Alu methylation in cancer remain limited. Objectives: Oral squamous cell carcinoma (OSCC) presents with high incidence in South-East Asia and thus the aim of this study was to evaluate the Alu methylation status in OSCCs and explore with the possibility of using this information for diagnostic screening. We evaluated Alu methylation status in a) normal oral mucosa compared to OSCC; b) peripheral blood mononuclear cells (PBMCs) of normal controls comparing to oral cancer patients; c) among oral epithelium of normal controls, smokers and oral cancer patients. Materials and Methods: Alu methylation was detected by combined bisulfite restriction analysis (COBRA) at 2 CpG sites. The amplified products were classified into three patterns; hypermethylation ($^mC^mC$), partial methylation ($^uC^mC+^mC^uC$), and hypomethylation ($^uC^uC$). Results: The results demonstrate that the $%^mC^mC$ value is suitable for differentiating normal and cancer in oral tissues (p=0.0002), but is not significantly observe in PBMCs. In addition, a stepwise decrease in this value was observed in the oral epithelium from normal, light smoker, heavy smoker, low stage and high stage OSCC (p=0.0003). Furthermore, receiver operating characteristic (ROC) curve analyses demonstrated the potential of combined $%^mC$ or $%^mC^mC$ values as markers for oral cancer detection with sensitivity and specificity of 86.7% and 56.7%, respectively. Conclusions: Alu hypomethylation is likely to be associated with multistep oral carcinogenesis, and might be developed as a screening tool for oral cancer detection.

Oxidative Stress Induces Hypomethylation of LINE-1 and Hypermethylation of the RUNX3 Promoter in a Bladder Cancer Cell Line

  • Wongpaiboonwattana, Wikrom;Tosukhowong, Piyaratana;Dissayabutra, Thasinas;Mutirangura, Apiwat;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3773-3778
    • /
    • 2013
  • Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with $H_2O_2$ for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in $H_2O_2$-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to $H_2O_2$. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

Identification of Differentially-Methylated Genes and Pathways in Patients with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Kim, Bong Jun;Youn, Dong Hyuk;Chang, In Bok;Kang, Keunsoo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.4-12
    • /
    • 2022
  • Objective : We reported the differentially methylated genes in patients with subarachnoid hemorrhage (SAH) using bioinformatics analyses to explore the biological characteristics of the development of delayed cerebral ischemia (DCI). Methods : DNA methylation profiles obtained from 40 SAH patients from an epigenome-wide association study were analyzed. Functional enrichment analysis, protein-protein interaction (PPI) network, and module analyses were carried out. Results : A total of 13 patients (32.5%) experienced DCI during the follow-up. In total, we categorized the genes into the two groups of hypermethylation (n=910) and hypomethylation (n=870). The hypermethylated genes referred to biological processes of organic cyclic compound biosynthesis, nucleobase-containing compound biosynthesis, heterocycle biosynthesis, aromatic compound biosynthesis and cellular nitrogen compound biosynthesis. The hypomethylated genes referred to biological processes of carbohydrate metabolism, the regulation of cell size, and the detection of a stimulus, and molecular functions of amylase activity, and hydrolase activity. Based on PPI network and module analysis, three hypermethylation modules were mainly associated with antigen-processing, Golgi-to-ER retrograde transport, and G alpha (i) signaling events, and two hypomethylation modules were associated with post-translational protein phosphorylation and the regulation of natural killer cell chemotaxis. VHL, KIF3A, KIFAP3, RACGAP1, and OPRM1 were identified as hub genes for hypermethylation, and ALB and IL5 as hub genes for hypomethylation. Conclusion : This study provided novel insights into DCI pathogenesis following SAH. Differently methylated hub genes can be useful biomarkers for the accurate DCI diagnosis.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

Temporal and Spatial Downregulation of Arabidopsis MET1 Activity Results in Global DNA Hypomethylation and Developmental Defects

  • Kim, Minhee;Ohr, Hyonhwa;Lee, Jee Woong;Hyun, Youbong;Fischer, Robert L.;Choi, Yeonhee
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.611-615
    • /
    • 2008
  • DNA methylation is an epigenetic mechanism for gene silencing. In Arabidopsis, MET1 is the primary DNA methyltransferase that maintains CG DNA methylation. Plants having an overall reduction of MET1 activity, caused by a met1 mutation or a constitutively expressed MET1 antisense gene, display genome hypomethylation, inappropriate gene and transposon transcription, and developmental abnormalities. However, the effect of a transient reduction in MET1 activity caused by inhibiting MET1 expression in a restricted set of cells is not known. For this reason, we generated transgenic plants with a MET1 antisense gene fused to the DEMETER (DME) promoter (DME:MET1 a/s). Here we show that DME is expressed in leaf primordia, lateral root primoridia, in the region distal to the primary root apical meristem, which are regions that include proliferating cells. Endogenous MET1 expression was normal in organs where the DME:MET1 a/s was not expressed. Although DME promoter is active only in a small set of cells, these plants displayed global developmental abnormalities. Moreover, centromeric repeats were hypomethylated. The developmental defects were accumulated by the generations. Thus, not maintaining CG methylation in a small population of proliferating cells flanking the meristems causes global developmental and epigenetic abnormalities that cannot be rescued by restoring MET1 activity. These results suggest that during plant development there is little or no short-term molecular memory for reestablishing certain patterns of CG methylation that are maintained by MET1. Thus, continuous MET1 activity in dividing cells is essential for proper patterns of CG DNA methylation and development.

Necessity of Epigenetic Epidemiology Studies on the Carcinogenesis of Lung Cancer in Never Smokers

  • Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.5
    • /
    • pp.263-264
    • /
    • 2018
  • Based on epidemiological and genomic characteristics, lung cancer in never smokers (LCNS) is a different disease from lung cancer in smokers. Based on current research, the main risk factor for LCNS may be air pollution. A recent case-control study in Koreans reported that nitrogen dioxide ($NO_2$) may be a risk factor for LCNS. Additionally, a cohort study showed that exposure to $NO_2$ was associated with significant hypomethylation. Thus, epigenetic epidemiology studies are needed in the near future to evaluate the carcinogenesis of LCNS according to chronic exposure to air pollution and/or viral infections.