• Title/Summary/Keyword: hypochlorite treatment

Search Result 151, Processing Time 0.028 seconds

Stimulation of Seed Germination of Korean Lawn grass (Zoysia japonica Steud.) by Sodium Hypochlorite Treatment (Sodium Hypochlorite 처리(處理)에 의한 한국잔디 종자(種子)의 발아촉진(發芽促進))

  • Ku, Ja Hyeong;Lee, Jong Suk;Lee, Young Bok
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.201-206
    • /
    • 1984
  • In order to obtain an easy and effective scarification method for stimulating the seed germination of Korean lawn grass (Zoysia japonica Steud.), sodium hypochlorite (SH), which is used as a commercial bleach and a seed disinfestant, was tested as a chemical scarifier instead of potassium hydroxide (KOH). 1. Scarification with 4% SH for 2 hours followed by 8-hour water-rinse stimulated seed germination more effectively compared to generalized scarification method by KOH treatment. 2. The degree of stimulating seed gemination was different by the various water-rinsing time after SH treatment, but the optimum rinsing time was about 4 to 8 hours. 3. GA treatment after SH scarification stimulated seed germination. However, the stimulation effect of GA was not showed in non-scarified control. 4. SH treatment significantly decreased the percentage of the infection of microflora in seed samples compared to KOH treatment. 5. Under practical seed scarification conditions for stimulating germination of Korean lawn grass seed. SH may have advantages over KOH with respect to ease of preparing, securing and handling.

  • PDF

Effect of Mixed Oxidants and Sodium Hypochlorite on Pathogenic Microorganisms in Olive flounder Paralichthys olivaceus Aquaculture on Jeju Island (제주도 양식 넙치(Paralichthys olivaceus)에서 분리한 병원균 3종에 대한 Mixed Oxidant 및 차아염소산나트륨 살균효과)

  • Park, Cheonman;Kim, Ki-hyuk;Moon, Hye-na;Yeo, In-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.389-396
    • /
    • 2018
  • Marine pathogenic bacteria, such as Streptococcus parauberis, Edwardsiella tarda and Vibrio harveyi, can cause lethal infections in farmed fish, ozone and antibiotics, are employed to sterilize waters used for rearing fish to mitigate this threat. The most widely used method is treatment with sodium hypochlorite solution. However, the maintenance of a constant concentration of chlorine in rearing waters can be difficult. We investigated the potential of a mixed oxidant (MO) solution generated by electrolysis of sea water to improve water quality. We measured the survival rates of fish pathogenic bacteria exposed to different concentrations of MO (0.5, 1.0, 1.5 and 2.0 MO) and sodium hypochlorite (0.5, 1.0, 1.5 and 2.0 ppm) for various lengths of time (0, 5, 10, 15, 20, 25 and 30 min). We found a time-dependent decrease in the survival rates of the tested pathogenic microorganisms. The sterilization effect of the MO solution on pathogenic organisms was greater than that of sodium hypochlorite for gram-negative and gram-positive bacteria. We conclude that MO solution produced by electrolysis could be used to maintain a constant chlorine concentration in aquaculture systems.

The Effect of Seed Coat Scarification with Sodium Hypochiorite on Germination of Zoysiagrass Seed (Zoysiagrass 종자 발아에 미치는 Sodiym Hypochlorite의 종피처리 효과)

  • 구자형;김태일;원동찬
    • Asian Journal of Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.89-94
    • /
    • 1989
  • Research was conducted to obtain t he optimum treatment Of sodium hypochlorite(NaOC I) at various temperatures in t he seed scarification for stimulating germination of zoysiagrass (Zocysia Japonica Steud ) seed. Morphological changes of seed coat were also examined by scanning electron micros cop(SEM). l. Differences in temperature of scarification with 2 .4% NaOCI showed little influence on promoting germination of seeds but seeds treated with 1% solution at l5˚C germinated less than that of higher temperatures. The promotion effect of 4% solution on germination was diminished when seeds were treated for 8 hours of more. The most favorable seed scarification unaffected hy temperature for enhancing germination was 4-6hours treatment at 4% solution in fresh seeds. 2. $GA_3$, treatment did not enhance germination of water-pretreated control seeds hut germination of seeds pretreated with NaOCI l was increased additional 10% or more hy$ GA_3$, Water pretreated control seeds treated with 50 mM hydrogen peroxide(H'O )germinated about 44%. In NaOCI treated seeds. $H_2$$O_2$ treatment increased germination additional l 0% or more. 3. NaOCI l and KOH treatment softened the seed coat and formed the pores hy removing the scab-like thikenings attached to the seed surface. These results suggest that the modes of action of NaOCl in the promotion of seed germination reside in it increase of the permeability of the seed coat, and in the provision of additional oxygen to the seed.

  • PDF

Effects of Seed Decontamination Treatments on Germination of Red Radish Seeds during Presoaking (적무 새싹종자의 소독제 처리에 의한 발아 시 미생물 제어효과)

  • Jun, So-Yun;Kim, Yun-Hwa;Sung, Jung-Min;Jeong, Jin-Woong;Moon, Kwang-Deog;Kwon, Joong-Ho;Lee, Yeon-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1528-1534
    • /
    • 2010
  • The antibacterial effects of seed decontamination during presoaking before sprouting as an intervention step for eliminating foodborne pathogens on red radish seeds were evaluated. The effect of seed decontamination on seed germination rate was also evaluated. Red radish seeds were inoculated (at a level of 3 to 4 log CFU/g) with Listeria monocytogenes ATCC 19111 and decontaminated with 20,000 ppm calcium hypochlorite, 50 and 100 ppm chlorinated water, acidic electrolyzed water, low-alkaline electrolyzed water, and ozonated water for 6 hours. The control seeds were immersed in distilled water. The germination rate was measured on each treatment for 48 hours. Treatments with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were more effective than treatments with chlorinated water and ozonated water. Immersion in 20,000 ppm calcium hypochlorite resulted in the largest microbial reduction (more than 3 logs). Treatments with acidic and low-alkaline electrolyzed water reduced APC by 3 logs and L. monocytogenes counts by 2 logs. After sprouting, APC and L. monocytogenes counts on seeds treated with 20,000 ppm calcium hypochlorite, acidic and low-alkaline electrolyzed water were significantly lower than the control. The germination rate ranged from 93.5% to 97.7% except for 20,000 ppm calcium hypochlorite (from 82.3% to 84.8%) after 48 hours. Although the treatments tested in this study will not eliminate L. monocytogenes on inoculated red radish seeds, the results show that rapid growth of surviving cells during sprouting could be prevented if red radish seeds are given a presoak treatment used in combination with a disinfectant treatment of irrigation water.

Effect of Chlorine Dioxide and Sodium Hypochlorite Treatment on the Reduction of Foodborne Pathogen in Korean Chive (영양부추에서 이산화염소와 차아염소산나트륨 처리의 식중독세균 저감화 효과)

  • Yun, Bohyun;Lee, Hyo-Sup;An, Hyun Mi;Kim, Won-Il;Kim, Hwang-Yong;Han, Sanghyun;Kim, Hyun-Ju;Ryu, Jae-Gee;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.154-162
    • /
    • 2017
  • The purpose of this study was to investigate the microbial reduction effect of chlorine dioxide and sodium hypochlorite in Korean chive. Korean chive inoculated with foodborne pathogens at the level of approximately 7~8 log CFU/g was treated with various concentration of chlorine dioxide (3, 4, 10, 25 and 100 ppm and sodium hypochlorite (100, 150 and 200 ppm) for 5, 10, 30 and 60 minutes. The treatment of 150 ppm sodium hypochlorite and 50 ppm chlorine dioxide for 30 min reduced the number of total bacteria in Korean chive up to 2.0 log CFU/g. Reduction of microbial levels was observed for all concentrations of sanitizers but their effectiveness did not correspond to their concentration. Due to the quality degradation, 50 ppm chlorine dioxide was not appropriate for Korean chive. Most effective reduction of microbial levels was observed when Korean chive were treated with 9 times more sanitizer in volume. For field application, the treatment of 150 ppm sodium hypochlorite showed 2.7 and 4.0 log CFU/g reductions for numbers of total bacteria and coliforms, respectively. Therefore, washing with sodium hypochlorite of a ratio of 1:9 (Korean chive : 150 ppm sodium hypochlorite (w/v)) for 30 minutes can reduce the number of foodborne pathogen in Korean chive.

Preparation of bi-polar membranes and their application to hypochlorite production

  • Kim, Jung Sik;Cho, Eun Hye;Rhim, Ji Won;Park, Chan Jong;Park, Soo-Gil
    • Membrane and Water Treatment
    • /
    • v.6 no.1
    • /
    • pp.27-42
    • /
    • 2015
  • In this study, poly (phenylene oxide) (PPO) and poysulfone (PSf) were sulfonated and aminated respectively. Both sulfonated poly (phenylene oxide) (SPPO) and aminated polysulfone (APSf) were characterized via the measurement of FT-IR, swelling degree, ion exchange capacity (IEC), and ion conductivity. Then the surfaces of these membranes were modified by surface fluorination using 2000 ppm $F_2$ gas against $N_2$ gas for 1 h at room temperature. The surface fluorinated SPPO and APSf membranes were characterized again to determine any differences between the pristine and fluorinated membranes. In total, 3 types of bi-polar membranes were prepared by varying the IEC of the APSf and having a fixed value for the IEC of the SPPO. The hypochlorite concentration generated by using the surface fluorinated membranes was dependent on the IEC of the APSf and ranged from 683 to 826 ppm, while there was a considerable improvement in the durability of the surface fluorinated membranes as they remained intact even after operating for 4 h.

The Control Efficacy of Sodium Hypochlorite against Violet Root Rot Caused by Helicobasidium mompa in Apple

  • Lee, Sung-Hee;Shin, Hyunman;Lee, Hyok-In;Lee, Seonghee
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.513-521
    • /
    • 2022
  • Our study was carried out to determine the control efficacy of sodium hypochlorite (NaOCl) for violet root rot caused by Helicobasidium mompa in apple. The experiment was conducted in the farm located at Chungbuk province in South Korea from 2014 to 2016. When infected apple trees were treated at least two or three times with 31.25 and 62.5 ml/l available chlorine content in NaOCl, it greatly increased the rooting of rootstock, and restored the tree crown density by 44.4-60.5%. In addition, the number of commercial fruit setting was increased by 54.3-64.5%, and the total starch content in shoots was significantly higher than other non-treated apple trees. However, the untreated disease control and thiophanate-methyl WP treated trees showed the symptom of dieback. Therefore, our results indicate that the drenching treatment of NaOCl with 31.25-62.5 ml/l available chlorine content more than two times from late fall to early spring could effectively control the violet root rot and recover tree vigor up to 60%.

Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils

  • Masruchin, Nanang;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.613-627
    • /
    • 2015
  • Simple methods of conductometric titration and infrared spectroscopy were used to quantify the surface carboxyl content of cellulose fibrils isolated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The effects of different cellulose sources, post or assisted-sonication oxidation treatment, and the amount of sodium hypochlorite addition on the carboxyl content of cellulose were reported. This study showed that post sonication treatment had no influence on the improvement of surface carboxyl charge of cellulose macrofibrils (CMFs). However, the carboxyl content increased for the isolated cellulose nanofibrils (CNFs). Thus the carboxyl content of CNFs is different from those of their corresponding bulk oxidized cellulose and CMFs. Filter paper as a CNF source imparted a higher surface charge than did hardwood bleached kraft pulp (HWBKP) and microcrystalline cellulose (MCC). It was considered that the crystallinity and microstructure of the initial cellulose affected oxidation efficiency. In addition, the carboxyl content of cellulose was successfully controlled by applying sonication treatment during the oxidation reaction and adjusting the amount of sodium hypochlorite.

Inactivation of White Spot Baculovirus(WSBV) by Chlorine, Iodine, Sunlight Exposure, Drying and Fresh Water (염소, 요오드, 일광, 건조 및 담수처리에 의한 White Spot Baculovirus(WSBV)의 불활성화)

  • Heo, Moon-Soo;Sohn, Sang-Gyu
    • Journal of fish pathology
    • /
    • v.13 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • In order to investigate the effect of chlorine disinfectant against white spot baculovirus (WSBV), 5, 10, or 30 ppm of sodium hypochlorite (NaOCl) was treated to the WSBV-infected shrimp, Penaeus chinensis. In contrast with the non-treated control, no shrimp was dead after of sodium hypochlorite treatment. This result indicated that WSBV was inactivated by chlorine treatment. No inactivation of WSBV was observed by 10, 20, 30 ppm of povidon-iodine treatment. WSBV was also inactivated by 2, 4 hr sunlight exposure and by 1, 2, 3 hr drying. WSBV was inactivated very effectively by addition of fresh water on sea water.

  • PDF

A Study on Effective Removal Method of Odorant Smell in Natural Gas using Sodium Hypochlorite (차아염소산나트륨을 이용한 천연가스 부취냄새 효과적 탈취방법 연구)

  • Lim, Hyung-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.154-159
    • /
    • 2018
  • Intentional releases occur frequently during maintenance in gas supplying companies, which may result in unpleasant odors, and the possible mistaken belief of a gas accident. Therefore, this study developed a chemical process for effective odorant removal in natural gas using an active chemical that is released intentionally during maintenance and inspection. To develop an effective treatment process for removing the odorant from released natural gas, the effluent concentrations of the odorant in the released gas were measured after a chemical oxidation reaction with a sodium hypochlorite solution in a compact gas scrubbing equipment newly devised in this study. The device was based on a mixed gas vent after the solution inject odorant in the gas through the energy of the venting gas. The cascade combination of a venturi pipe and mixing chamber was developed to remove the odorant effectively from the purposely-released natural gas using an oxidative reaction between the mercaptan compounds (odorant) and the sodium hypochlorite solution. On the other hand, the developed method could be applied limitedly to a relatively small gas release from a low-pressure source. Further studies will be needed to apply the developed process to a large-scale gas release from a high-pressure source.