• Title/Summary/Keyword: hyperosmotic stress

Search Result 17, Processing Time 0.04 seconds

Proteome Analysis of Recombinant CHO Cells Under Hyperosmotic Stress

  • Lee, Mun-Su;Kim, Gyeong-Uk;Kim, Yeong-Hwan;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.311-314
    • /
    • 2003
  • Under hyperosmotic stress, rCHO cells display decreased specific growth rate $({\mu})$ and increased specific antibody productivity $(q_{Ab})$. The effects of hyperosmotic stress on batch culture cellular dynamics are not well understood. To this end, we conducted a proteome profile of rCHO cells, using 2D-gel, MALDI-TOF-MS and MS/MS. As a result, the proteome profile of rCHO cells could be established using 41 identified proteins. Based on this proteome profile of rCHO cells, we have found at least 8 differently expressed spots at hyperosmotic osmolality (450 mOsm/kg). Among these spots, two metabolic enzymes were found to be up-regulated (pyruvate kinase and GAPDH), while down-regulated protein was identified as tubulin. It shows that hyperosmotic stress can alter metabolic state, by up-regulated activities of two glycolysis enzymes, which could lead to activate the generation of metabolic energy. Tubulin expression was down-regulated, suggesting a reduction of cell division. Finally, the increased conversion energy could leads to improve overall productivity.

  • PDF

Role of Calcium in the Osmoregulation under Salt Stress in Dunaliella salina

  • Lee, Sun-Hi
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 1995
  • Involvement of calcium in signal transduction of salt stress was investigated in 1.7 M NaCl adapted Dunaliella salina, extremely halotolerant, unicellular green alga. When hyperosmotic (3.4 M NaCl) or Hypoosmotic (0.8 M NaCl) stress was treated, extracellular calcium was influxed in or intracellular calcium effluxed from D. salina, respectively, and these fluxes were proportional to the degree of stress. This might indicate indirectly that the change of calcium level occurred within the cells. In addition, the change of calcium flux was ahead of glycerol synthesis which has been known as the physiological response to salt stress. Osmoregulation was affected byextracellular calcium concentration, and increase of glycerol content as an osmoticum was inhibited about 50% by treatment of TFP and W-7 known as calmodulin specific inhibitors. Furthermore, in the case of the hyperosmotic stressed cells, the amount of 21 kD and 39 kD protein appeared to be calcium binding protein were increased. Among these, the 39 kD protein was detected only in the hyperosmotic stressed cells. The results obtained in the present work suggest that the possibility of calcium as a second messenger in the transduction of salt stress signal exists in the osmoregulation system of D. salina.

  • PDF

Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon;Jung, Ji-Hun;Kim, Tae-Hyung;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2004
  • Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

UmTco1, a Hybrid Histidine Kinase Gene, Is Essential for the Sexual Development and Virulence of Ustilago maydis

  • Yun, Yeo Hong;Oh, Man Hwan;Kim, Jun Young;Kim, Seong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.1010-1022
    • /
    • 2017
  • Hybrid histidine kinase is part of a two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. The Tco1 gene in human pathogen Cryptococcus neoformans encodes a hybrid histidine kinase and is important for pathogenesis. In this study, we identified a Tco1 homolog, UmTco1, in the maize pathogen Ustilago maydis by bioinformatics analysis. To explore the role of UmTco1 in the survival of U. maydis under environmental stresses and its pathogenesis, ${\Delta}umtco1$ mutants were constructed by allelic exchange. The growth of ${\Delta}umtco1$ mutants was significantly impaired when they were cultured under hyperosmotic stress. The ${\Delta}umtco1$ mutants exhibited increased resistance to antifungal agent fludioxonil. In particular, the ${\Delta}umtco1$ mutants were unable to produce cytokinesis or conjugation tubes, and to develop fuzzy filaments, resulting in impaired mating between compatible strains. The expression levels of Prf1, Pra1, and Mfa1, which are involved in the pheromone pathway, were significantly decreased in the ${\Delta}umtco1$ mutants. In inoculation tests to the host plant, the ${\Delta}umtco1$ mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that UmTco1 plays important roles in the survival under hyperosmotic stress, and contributes to cytokinesis, sexual development, and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.

The Change of Taurine Transport in Osteocytes by Oxidative Stress, Hypertonicity and Calcium Channel Blockers

  • Kang, Young-Sook;Kim, Soon-Joo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Taurine is the most abundant amino acid in many tissues and is found to be enhancing the bone tissue formation or inhibits the bone loss. Although it is reported that taurine reduces the alveolar bone loss through inhibiting the bone resorption, its functions of taurine and expression of taurine transporter (TauT) in bone have not been identified yet. The purpose of this study is to clarify the uptake mechanism of taurine in osteoblast using mouse osteoblast cell lines. In this study, mouse stromal ST2 cells and mouse osteoblast-like MC3T3-E1 cells as osteoblast cell lines were used. The activity of taurine uptake was assessed by measuring the uptake of [$^3H$]taurine in the presence or absence of inhibitors. TauT mRNA was detected in ST2 and MC3T3-E1 cells. [$^3H$]Taurine uptake by these cells was dependent on the presence of extracellular calcium ion. The [$^3H$]taurine uptake in ST2 cells treated with 4 mM calcium was increased by 1.7-fold of the control which was a significant change. In contrast, in $Ca^{++}$-free condition and L-type calcium channel blockers (CCBs), taurine transport to osteocyte was significantly inhibited. In oxidative stress conditions, [$^3H$]taurine uptake was decreased by TNF-$\alpha$ and $H_2O_2$. Under the hyperosmotic conditions, taurine uptake was increased, but inhibited by CCBs in hyperosmotic condition. These results suggest that, in mouse osteoblast cell lines, taurine uptake by TauT was increased by the presence of extracellular calcium, whereas decreased by CCBs and oxidative stresses, such as TNF-$\alpha$ and $H_2O_2$.

Sodium Salicylate Activates p38MAPK Though a Specific-Sensing Mechanism, Distinct from Pathways Used by Oxidative Stress, Heat Shock, and Hyperosmotic Stress

  • Kim, Jung-Mo;Oh, Su-Young;Kim, Min-Young;Seo, Myoung-Suk;Kang, Chi-Duk;Park, Hye-Gyeong;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.9 no.4
    • /
    • pp.241-248
    • /
    • 2003
  • Sodium salicylate, a plant stress hormone that plays an important role(s) in defenses against pathogenic microbial and herbivore attack, has been shown to induce a variety of cell responses such as anti-inflammation, cell cycle arrest and apoptosis in animal cells. p38MAPK plays a critical role(s) in the cell regulation by sodium salicylate. However, the signal pathway for sodium salicylate-induced p38MAPK activation is yet unclear. In this study, we show that although sodium salicylate enhances reactive oxygen species (ROS) production, N-acetyl-L-cysteine, a general ROS scavenger, did not prevent sodium salicylate-induced p38MAPK, indicating ROS-independent activation of p38MAPK by sodium salicylate. Sodium salicylate-activated p38MAPK appeared to be very rapidly down-regulated 2 min after removal of sodium salicylate. Interestingly, sodium salicylate-pretreated cells remained fully responsive to re-induction of p38MAPK activity by a second sodium salicylate stimulation or by other stresses, $H_2O$$_2$ and methyl jasmonate (MeJA), thereby indicating that sodium salicylate does not exhibit both homologous and heterologous desensitization. In contrast, pre-exposure to MeJA, $H_2O$$_2$, heat shock, or hyperosmotic stress reduced the responsiveness to subsequent homologous stimulation. Sodium salicylate was able to activate p38MAPK in cells desensitized by other heterologous p38MAPK activators. These results indicate that there is a sensing mechanism highly specific to sodium salicylate for activation of p38MAPK, distinct trom pathways used by other stressors such as MeJA, $H_2O$$_2$ heat shock, and hyperosmotic stress.

  • PDF

Molecular Cloning of Insulin-like Growth Factor-I (IGF-I) and IGF-II Genes of Marine Medaka (Oryzias dancena) and Their Expression in Response to Abrupt Transfer from Freshwater to Seawater

  • Kang, Yue-Jai;Kim, Ki-Hong
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.224-230
    • /
    • 2010
  • Growth hormone (GH) is known as one of the main osmoregulators in euryhaline teleosts during seawater (SW) adaptation. Many of the physiological actions of GH are mediated through insulin-like growth factor-I (IGF-I), and the GH/IGF-I axis is associated with osmoregulation of fish during SW acclimation. However, little information is available on the response of fish IGF-II to hyperosmotic stress. Here we present the first cloned IGF-I and IGF-II cDNAs of marine medaka, Oryzias dancena, and an analysis of the molecular characteristics of the genes. The marine medaka IGF-I cDNA is 1,340 bp long with a 257-bp 5' untranslated region (UTR), a 528 bp 3' UTR, and a 555-bp open reading frame (ORF) encoding a propeptide of 184 amino acid (aa) residues. The full-length marine medaka IGF-II cDNA consists of a 639 bp ORF encoding 212 aa, a 109 bp 5' UTR, and a 416 bp 3' UTR. Homology comparison of the deduced aa sequences with other IGF-Is and IGF-IIs showed that these genes in marine medaka shared high structural homology with orthologs from other teleost as well as mammalian species, suggesting high conservation of IGFs throughout vertebrates. The IGF-I mRNA level increased following transfer of marine medaka from freshwater (FW) to SW, and the expression level was higher than that of the control group, which was maintained in FW. This significantly elevated IGF-I level was maintained throughout the experiment (14 days), suggesting that in marine medaka, IGF-I is deeply involved in the adaptation to abrupt salinity change. In contrast to IGF-I, the increased level of marine medaka IGF-II mRNA was only maintained for a short period, and quickly returned a level similar to that of the control group, suggesting that marine medaka IGF-II might be a gene that responds to acute stress or one that produces a supplemental protein to assist with the osmoregulatory function of IGF-I during an early phase of salinity change.

Roles of YehZ, a Putative Osmoprotectant Transporter, in Tempering Growth of Salmonella enterica serovar Typhimurium

  • Kim, Seul I;Ryu, Sangryeol;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1560-1568
    • /
    • 2013
  • Salmonella, a main cause of foodborne diseases, encounters a variety of environmental stresses and overcomes the stresses by multiple resistance strategies. One of the general responses to hyperosmotic stress is to import or produce compatible solutes so that cells maintain fluid balance and protect proteins and lipids from denaturation. The ProP and ProU systems are the main transport systems for compatible solutes. The OsmU system, recently identified as a third osmoprotectant transport system, debilitates excessive growth as well by reducing production of trehalose. We studied a fourth putative osmoprotectant transport system, YehZYXW, with high sequence similarity with the OsmU system. A Salmonella strain lacking YehZ, a predicted substrate-binding protein, did not suffer from hyperosmolarity but rather grew more rapidly than the wild type regardless of glycine betaine, an osmoprotectant, suggesting that the YehZYXW system controls bacterial growth irrespective of transporting glycine betaine. However, the growth advantage of ${\Delta}yehZ$ was not attributable to an increase in OtsBA-mediated trehalose production, which is responsible for the outcompetition of the ${\Delta}osmU$ strain. Overexpressed YehZ in trans was capable of deaccelerating bacterial growth vice versa, supporting a role of YehZ in dampening growth. The expression of yehZ was increased in response to nutrient starvation, acidic pH, and the presence of glycine betaine under hyperosmotic stress. Identifying substrates for YehZ will help decipher the role of the YehZYXW system in regulating bacterial growth in response to environmental cues.

The Effects of Acute Osmotic Stress on Innate Immunity of Nile Tilapia (Oreochromis niloticus)

  • Choi, Sang-Hoon;Park, Kwan-Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • The effects of osmotic stress on the non-specific immune response of Nile tilapia, Oreochromis niloticus, were investigated. Osmoregulatory mechanism of tilapia has been studied, but less information is available about innate immune response of O. niloticus faced with hyperosmolality. Acute osmotic stress was elicited by transferring tilapia from freshwater (FW) to 24 psu seawater (SW). Non-specific immune parameters including lysozyme activities of plasma and head kidney (HK), alternative complement pathway (ACP) activity in plasma, phagocytic capacities of spleen and HK immune cells, and respiratory burst activity of immune cells in both HK and spleen were analyzed. Lysozyme activities were increased at 1 h and 30 h after transfer to SW, but decreased at 10 h after SW transfer. Conversely, ACP activity increased 10 h after SW transfer. Phagocytic capacity increased slightly at 1 h and 5 h after SW transfer, and respiratory burst activity showed an increase in superoxide release at 10 h after SW transfer. Taken together, these results indicate that the exposure of tilapia to hyperosmotic conditions has immunostimulatory effects on cellular and humoral immune reactions.