• 제목/요약/키워드: hypernetworks

검색결과 8건 처리시간 0.022초

실수값 인자 데이터의 비지도 학습을 위한 에너지 기반 하이퍼네트워크 모델 (Energy-based Hypernetworks Model for Unsupervised Learning on Real-valued Data)

  • 김권일;허민오;이상우;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.480-482
    • /
    • 2012
  • 하이퍼네트워크(Hypernetworks)는 하이퍼에지(hyperedge)들로 이루어진 생성 모델(generative model)로서, 주로 이산(binary) 데이터에 적용되어왔다. 본 논문에서는 이산 데이터와 실수 데이터를 모두 다룰 수 있는 새로운 하이퍼네트워크 모델을 에너지 기반 모델(energy-based model)의 형태로 제시하고, 비지도 학습(unsupervised learning) 알고리즘으로 데이터를 성공적으로 학습함을 간단한 실험을 통해 보이겠다.

마이크로어레이 기반 miRNA 모듈 분석을 위한 하이퍼망 분류 기법 (Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis)

  • 김선;김수진;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권6호
    • /
    • pp.347-356
    • /
    • 2008
  • 마이크로어레이는 분자 생물학 실험에 있어 중요한 도구로 사용되고 있으며, 마이크로어레이 데이타 분석을 위한 다양한 계산학적 방법이 개발되어 왔다. 그러나, 기존 분석방법은 주어진 조건에 영향을 주는 개별 유전자를 추출하는 데 강한 방면, 유전자 간의 복합작용에 의한 영향을 분석하기 힘들다는 단점을 가지고 있다. 하이퍼망 모델은 생물학적인 네트워크 작용을 모방한 구조이며, 계산과정에서 요소간의 복합작용을 직접 고려하기 때문에 기존 방법에서 다루기 힘들었던 요소간 상호작용 분석이 가능하다는 장점을 가진다. 본 논문에서는 마이크로어레이 데이타를 기반으로 microRNA(miRNA) 프로파일 분석을 위한 하이퍼망 분류 기법을 소개한다. 하이퍼망 분류기는 miRNA 쌍을 기본 요소로 하여 진화 과정을 통해 miRNA 분류 데이타를 학습한다. 학습된 하이퍼망으로부터 유의하다.고 판단되는 miRNA 모듈을 쉽게 추출할 수 있으며, 사용자는 추출된 모듈의 유치미성을 직접 판단할 수 있다. 하이퍼망 분류기는 암 관련 miRNA 발현 데이타 분류 실험을 통해 91.46%의 정확도를 보임으로써 기존 기계학습 방법에 비해 뛰어난 성능을 보여주었으며, 하이퍼망 분석을 통해 생물학적으로 유의한 miRNA 모듈을 찾을 수 있음을 확인하였다.

이산화 과정을 배제한 실수 값 인자 데이터의 고차 패턴 분석을 위한 진화연산 기반 하이퍼네트워크 모델 (Evolutionary Hypernetwork Model for Higher Order Pattern Recognition on Real-valued Feature Data without Discretization)

  • 하정우;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권2호
    • /
    • pp.120-128
    • /
    • 2010
  • 하이퍼네트워크는 하이퍼그래프의 일반화된 모델로 학습과정에 있어 진화적 개념을 도입한 확률 그래프 기반의 기계학습 알고리즘으로서 최근 들어 여러 다양한 분야에 응용되고 있다. 그러나 하이퍼네트워크 모델은 데이터와 모델을 구성하는 하이퍼에지 간의 동등비교를 기반으로 하는 학습과정의 특성상 데이터를 구성하는 인자들이 범주형인 경우에만 학습 및 모델링이 가능하고 실수 값으로 표현된 데이터를 학습하기 위해서는 이산화 등의 전처리가 선행되어야 한다는 한계점이 있다. 하지만 데이터 전처리에 있어 이산화 하는 과정은 필연적으로 정보손실이 발생할 수밖에 없기 때문에 이는 분류 예측 모델의 성능 저하를 유발하는 원인이 될 수 있다. 이러한 기존 하이퍼네트워크 모델의 한계점을 극복하기 위해 본 연구에서는 별도의 데이터 전처리 과정을 거치지 않고 실수 인자로 구성된 데이터의 패턴 학습이 가능한 개선된 하이퍼네트워크 모델을 제안한다. 여러 실험 결과를 통해 제안한 하이퍼네트워크 모델은 기존 하이퍼네트워크 모델에 비해 실수형 데이터에 대한 학습 및 분류 결과 성능이 향상되었을 뿐 아니라, 다른 여러기계학습 방법들에 비해서도 경쟁력 있는 성능이 나타남을 확인하였다.

잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법 (Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems)

  • 하정우;김병희;이바도;장병탁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권10호
    • /
    • pp.1010-1014
    • /
    • 2010
  • 잡지기사 관련 상품 연계 추천 서비스는 온라인 상에서 잡지 가사의 컨텍스트를 반영하여 상품을 추천하는 서비스이다. 현재 이러한 서비스는 잡지기사와 상품에 부여되어 있는 태그 간의 유사성을 기준으로 한 추천 기술에 의존하고 있으나, 태그 부여 비용과 추천의 정확도가 높지 않은 단점이 있다. 본 논문에서는 잡지 기사 컨텍스트 관련 상품연계 추천 기술의 한 요소로서 상품이미지 정보로부터 상품의 종류를 자동으로 분류하고 이를 상품의 태그로 활용하는 방법을 제안한다. 이미지에서 추출한 시각단어(visual word)와 상품 종류 간의 고차 연관관계를 하이퍼네트워크 기법을 통해 학습하고, 학습된 하이퍼네트워크를 이용하여 상품 이미지에 한 개 이상의 태그를 자동으로 부여한다. 실제 온라인 쇼핑몰에서 사용되는 10 가지 종류의 상품 1,251개의 이미지 데이터를 기반으로, 하이퍼네트워크 이용한 상품이미지 자동 태깅 기법이 다른 기계학습 방법과 비교하여 경쟁력 있는 성능을 보여줌과 동시에, 복수개의 태그 부여를 통해 상품 이미지 태깅의 정확성이 향상됨을 보인다.

조건부 우도 최대화를 통한 하이퍼네트워크 학습 (A Learning Method of Hypernetworks by Maximizing Conditional Likelihood)

  • 이상우;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.429-431
    • /
    • 2012
  • 하이퍼네트워크를 학습하는 기존의 방법은 데이터의 분포를 학습하기 위하여 주로 하이퍼에지의 적절한 조합을 찾는데 초점을 맞추었다. 반면 본 논문에서는 주어진 하이퍼에지의 조합 내에서 가중치를 조절하여 데이터의 분포를 학습하도록 하는 방법을 제안한다. 이 방법은 분류 문제에서 하이퍼네트워크가 표현하고 있는 클래스 y에 대한 데이터 x의 조건부 우도(Conditional Likelihood)를 대화하는 방식으로 학습을 진행한다. 본 논문에서는 제안된 학습 방법이 기존의 학습 방법보다 개선된 학습 성능을 보일 뿐만아니라, 제안된 가중치 학습 방법이 기존의 가중치 학습 방법을 포함하는 관계임을 논증한다.

진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색 (Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models)

  • 김수진;하정우;장병탁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권10호
    • /
    • pp.980-984
    • /
    • 2010
  • microRNA (miRNA)와 mRNA 조절 상호작용 탐색은 다양한 생물학적 현상에 있어 새로운 시야를 제공해 줄 수 있다. 최근 생물학적 프로세스에서 miRNA는 유전자 발현을 제어하고 세포를 기능적으로 조절하는 중요한 역할을 하는 요소로 밝혀졌다. 이에 복잡한 생물학 시스템에서 miRNA의 기능적 활동을 이해하기 위해서는 miRNA와 mRNA간 상호작용 분석은 필수적이다. 그러나 아직까지 복잡한 miRNA와 mRNA간 상호작용 관계를 추론하는 것은 어려운 문제이기 때문에 많은 연구자들이 실험적, 전산학적 접근 방법을 제안하며 활발한 연구를 진행하고 있다. 본 논문에서는 이종의 발현 데이터로부터 기능적으로 상호작용하는 miRNA-mRNA 조합을 탐색하기 위한 진화 연산 기반의 새로운 하이퍼네트워크 모델을 제안한다. 이에 실험결과로 제안하는 방법을 인간 암 관련 miRNA와 mRNA 발현 데이터에 적용하여 암 특이적 miRNA-mRNA 상호작용 집합을 탐색하고 발견한 miRNA-mRNA 상호작용 관계가 생물학적으로 유의함을 제시한다.

장소 정보를 학습한 딥하이퍼넷 기반 TV드라마 소셜 네트워크 분석 (Social Network Analysis of TV Drama via Location Knowledge-learned Deep Hypernetworks)

  • 남장군;김경민;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권11호
    • /
    • pp.619-624
    • /
    • 2016
  • Social-aware video는 자유로운 스토리 전개를 통해 인물들간의 관계뿐만 아니라 경제, 정치, 문화 등 다양한 지식을 사람에게 전달해주고 있다. 특히 장소에 따른 사람들간의 대화 습성과 행동 패턴은 사회관계를 분석하는데 있어서 아주 중요한 정보이다. 하지만 멀티모달과 동적인 특성으로 인해 컴퓨터가 비디오로부터 자동으로 지식을 습득하기에는 아직 많은 어려움이 있다. 이러한 문제점들을 해결하기 위해 기존의 연구에서는 딥하이퍼넷 모델을 사용하여 드라마 등장인물의 시각과 언어 정보를 기반으로 계층적 구조를 사용해 소셜 네트워크를 분석하였다. 하지만 장소 정보를 사용하지 않아 전반적인 스토리로부터 소셜 네트워크를 분석할 수밖에 없었다. 본 논문에서는 기존 연구를 바탕으로 장소 정보를 추가하여 각 장소에서의 인물 특성을 분석해 보았다. 본 논문에서는 총 4400분 분량의 TV드라마 "Friends"를 사용했고 C-RNN모델을 통해 등장인물을 인식하였으며 Bag of Features로 장소를 분류하였다. 그리고 딥하이퍼넷 모델을 통해 자동으로 소셜 네트워크를 생성하였고 각 장소에서의 인물 관계 변화를 분석하였다.