Browse > Article

Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis  

Kim, Sun (서울대학교 컴퓨터공학부)
Kim, Soo-Jin (서울대학교 생물정보학 협동과정)
Zhang, Byoung-Tak (서울대학교 컴퓨터공학부)
Abstract
High-throughput microarray is one of the most popular tools in molecular biology, and various computational methods have been developed for the microarray data analysis. While the computational methods easily extract significant features, it suffers from inferring modules of multiple co-regulated genes. Hypernetworhs are motivated by biological networks, which handle all elements based on their combinatorial processes. Hence, the hypernetworks can naturally analyze the biological effects of gene combinations. In this paper, we introduce a hypernetwork classifier for microRNA (miRNA) profile analysis based on microarray data. The hypernetwork classifier uses miRNA pairs as elements, and an evolutionary learning is performed to model the microarray profiles. miTNA modules are easily extracted from the hypernetworks, and users can directly evaluate if the miRNA modules are significant. For experimental results, the hypernetwork classifier showed 91.46% accuracy for miRNA expression profiles on multiple human canters, which outperformed other machine learning methods. The hypernetwork-based analysis showed that our approach could find biologically significant miRNA modules.
Keywords
hypernetworks; miRNA module analysis; microarrays; classification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Segal, E., Friedman, N., Kaminski, N., Regev, A., and Koller, D., 'From Signatures to Models: Understanding Cancer Using Microarrays,' Nature Genetics, Vol.37, s38-s45, 2005   DOI   ScienceOn
2 Huang, E., Ishida, S., Pittman, J., Dressman, H., Bild, A., Kloos, M., Kloos, M., Pestell, R.G., West, M., and Nevins, J.R., 'Gene Expression Phenotypic Models That Predict the Activity of Oncogenic Pathways,' Nature Genetics, Vol.34, pp. 226-230, 2003   DOI   ScienceOn
3 Meltzer, P.S., 'Cancer Genomics: Small RNAs with Big Impacts,' Nature, Vol.435, pp. 745-746, 2005   DOI   ScienceOn
4 Berge, C., Graphs and Hypergraphs, North-Holland Publishing, 1973
5 Beissbarth, T., Speed, T.P., 'GOstat: Find Statistically Overrepresented Gene Ontologies within a Group of Genes,' Bioinformatics, Vol.20, No.9, pp. 1464-1465, 2004   DOI
6 Phan, R.T. and Dalla-Favera, R., 'The BCL6 Proto-Oncogene Suppresses p53 Expression in Germinal-Centre B Cells,' Nature, Vol.432, pp. 635-639, 2004   DOI   ScienceOn
7 Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C.M., 'Human microRNA Genes are Frequently Located at Fragile Sites and Genomic Regions Involved in Cancers,' Proceedings of the National Academy of Sciences, Vol.101, No.9, pp. 2999-3004, 2006   DOI   ScienceOn
8 MacKay, D., Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2004
9 Kim, S., Kim, S.-J., and Zhang, B.-T., 'Evolving Hypernetwork Classifiers for microRNA Expression Profile Analysis,' IEEE Congress on Evolutionary Computation, pp. 313-319, 2007
10 Zhang, B.-T., 'Random Hypergraph Models of Learning and Memory in Biomolecular Networks: Shorter-Term Adaptability vs. Longer-Term Persistency,' IEEE Symposium on Foundations of Computational Intelligence, pp. 344-349, 2007
11 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P., 'Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles,' Proceedings of the National Academy of Sciences, Vol.102, pp. 15545-15550, 2005
12 Segal, E., Friedman, N., Koller, D., and Regev, A., 'A Module Map Showing Conditional Activity of Expression Modules in Cancer,' Nature Genetics, Vol.36, pp. 1090-1098, 2004   DOI   ScienceOn
13 Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M.S., Giannakakis, A., Liang, S., Naylor, T.L., Barchetti, A., Ward, M.R., Yao, G., Medina, A., Brien-Jenkins, A.O., Katsaros, D., Hatzigeorgiou, A., Gimotty, P.A., Weber, B.L., and Coukos, G., 'MicroRNAs Exhibit High Frequency Genomic Alterations in Human Cancer,' Proceedings of the National Academy of Sciences, Vol.103, pp. 9136-9141, 2006
14 Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., and Golub, T.R., 'MicroRNA Expression Profiles Classify Human Cancers,' Nature, Vol.435, pp. 834-838, 2005   DOI   ScienceOn
15 Dettling, M. and Buhlmann, P., 'Boosting for Tumor Classification with Gene Expression Data,' Bioinformatics, Vol.19, pp. 1061-1069, 2003   DOI
16 Ramaswamy, S. and Golub, T.R., 'DNA Microarrays in Clinical Oncology,' Journal of Clinical Oncology, Vol.20, pp. 1932-1941, 2002   DOI
17 Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet C.W., Furey, T.S., Ares, M., Jr., and Haussler, D., 'Knowledge-Based Analysis of Microarray Gene Expression Data by Using Support Vector Machines,' Proceedings of the National Academy of Sciences, Vol.97, No.1, pp. 262-267, 2000   DOI
18 Milo, R., Shen-Orr, S., Itzkovitz, S., Kashitan, N., Chklovskii, D., and Alon, U., 'Network Motifs: Simple Building Blocks of Comples Networks,' Science, Vol.298, pp. 824-827, 2002   DOI
19 Kim, S., Heo, M.-O., and Zhang, B.-T., 'Text Classifiers Evolved on a Simulated DNA Computer,' IEEE Congress on Evolutionary Computation, pp. 9196-9202, 2006
20 Kashatus, D., Cogswell, P., and Baldwin, A.S., 'Expression of the Bcl-3 Proto-Oncogene Suppresses p53 Activation,' Genes and Development, Vol.20, pp. 225-235, 2006   DOI   ScienceOn