• Title/Summary/Keyword: hypernetworks

Search Result 8, Processing Time 0.022 seconds

Energy-based Hypernetworks Model for Unsupervised Learning on Real-valued Data (실수값 인자 데이터의 비지도 학습을 위한 에너지 기반 하이퍼네트워크 모델)

  • Kim, Kwon-Ill;Heo, Min-Oh;Lee, Sang-Woo;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.480-482
    • /
    • 2012
  • 하이퍼네트워크(Hypernetworks)는 하이퍼에지(hyperedge)들로 이루어진 생성 모델(generative model)로서, 주로 이산(binary) 데이터에 적용되어왔다. 본 논문에서는 이산 데이터와 실수 데이터를 모두 다룰 수 있는 새로운 하이퍼네트워크 모델을 에너지 기반 모델(energy-based model)의 형태로 제시하고, 비지도 학습(unsupervised learning) 알고리즘으로 데이터를 성공적으로 학습함을 간단한 실험을 통해 보이겠다.

Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis (마이크로어레이 기반 miRNA 모듈 분석을 위한 하이퍼망 분류 기법)

  • Kim, Sun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.347-356
    • /
    • 2008
  • High-throughput microarray is one of the most popular tools in molecular biology, and various computational methods have been developed for the microarray data analysis. While the computational methods easily extract significant features, it suffers from inferring modules of multiple co-regulated genes. Hypernetworhs are motivated by biological networks, which handle all elements based on their combinatorial processes. Hence, the hypernetworks can naturally analyze the biological effects of gene combinations. In this paper, we introduce a hypernetwork classifier for microRNA (miRNA) profile analysis based on microarray data. The hypernetwork classifier uses miRNA pairs as elements, and an evolutionary learning is performed to model the microarray profiles. miTNA modules are easily extracted from the hypernetworks, and users can directly evaluate if the miRNA modules are significant. For experimental results, the hypernetwork classifier showed 91.46% accuracy for miRNA expression profiles on multiple human canters, which outperformed other machine learning methods. The hypernetwork-based analysis showed that our approach could find biologically significant miRNA modules.

Evolutionary Hypernetwork Model for Higher Order Pattern Recognition on Real-valued Feature Data without Discretization (이산화 과정을 배제한 실수 값 인자 데이터의 고차 패턴 분석을 위한 진화연산 기반 하이퍼네트워크 모델)

  • Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.120-128
    • /
    • 2010
  • A hypernetwork is a generalized hypo-graph and a probabilistic graphical model based on evolutionary learning. Hypernetwork models have been applied to various domains including pattern recognition and bioinformatics. Nevertheless, conventional hypernetwork models have the limitation that they can manage data with categorical or discrete attibutes only since the learning method of hypernetworks is based on equality comparison of hyperedges with learned data. Therefore, real-valued data need to be discretized by preprocessing before learning with hypernetworks. However, discretization causes inevitable information loss and possible decrease of accuracy in pattern classification. To overcome this weakness, we propose a novel feature-wise L1-distance based method for real-valued attributes in learning hypernetwork models in this study. We show that the proposed model improves the classification accuracy compared with conventional hypernetworks and it shows competitive performance over other machine learning methods.

Auto-tagging Method for Unlabeled Item Images with Hypernetworks for Article-related Item Recommender Systems (잡지기사 관련 상품 연계 추천 서비스를 위한 하이퍼네트워크 기반의 상품이미지 자동 태깅 기법)

  • Ha, Jung-Woo;Kim, Byoung-Hee;Lee, Ba-Do;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1010-1014
    • /
    • 2010
  • Article-related product recommender system is an emerging e-commerce service which recommends items based on association in contexts between items and articles. Current services recommend based on the similarity between tags of articles and items, which is deficient not only due to the high cost in manual tagging but also low accuracies in recommendation. As a component of novel article-related item recommender system, we propose a new method for tagging item images based on pre-defined categories. We suggest a hypernetwork-based algorithm for learning association between images, which is represented by visual words, and categories of products. Learned hypernetwork are used to assign multiple tags to unlabeled item images. We show the ability of our method with a product set of real-world online shopping-mall including 1,251 product images with 10 categories. Experimental results not only show that the proposed method has competitive tagging performance compared with other classifiers but also present that the proposed multi-tagging method based on hypernetworks improves the accuracy of tagging.

A Learning Method of Hypernetworks by Maximizing Conditional Likelihood (조건부 우도 최대화를 통한 하이퍼네트워크 학습)

  • Lee, Sang-Woo;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.429-431
    • /
    • 2012
  • 하이퍼네트워크를 학습하는 기존의 방법은 데이터의 분포를 학습하기 위하여 주로 하이퍼에지의 적절한 조합을 찾는데 초점을 맞추었다. 반면 본 논문에서는 주어진 하이퍼에지의 조합 내에서 가중치를 조절하여 데이터의 분포를 학습하도록 하는 방법을 제안한다. 이 방법은 분류 문제에서 하이퍼네트워크가 표현하고 있는 클래스 y에 대한 데이터 x의 조건부 우도(Conditional Likelihood)를 대화하는 방식으로 학습을 진행한다. 본 논문에서는 제안된 학습 방법이 기존의 학습 방법보다 개선된 학습 성능을 보일 뿐만아니라, 제안된 가중치 학습 방법이 기존의 가중치 학습 방법을 포함하는 관계임을 논증한다.

Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models (진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색)

  • Kim, Soo-Jin;Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.980-984
    • /
    • 2010
  • Exploring microRNA (miRNA) and mRNA regulatory interactions may give new insights into diverse biological phenomena. Recently, miRNAs have been discovered as important regulators that play a major role in various cellular processes. Therefore, it is essential to identify functional interactions between miRNAs and mRNAs for understanding the context- dependent activities of miRNAs in complex biological systems. While elucidating complex miRNA-mRNA interactions has been studied with experimental and computational approaches, it is still difficult to infer miRNA-mRNA regulatory modules. Here we present a novel method, termed layered hypernetworks (LHNs), for identifying functional miRNA-mRNA interactions from heterogeneous expression data. In experiments, we apply the LHN model to miRNA and mRNA expression profiles on multiple cancers. The proposed method identifies cancer-specific miRNA-mRNA interactions. We show the biological significance of the discovered miRNA- mRNA interactions.

Social Network Analysis of TV Drama via Location Knowledge-learned Deep Hypernetworks (장소 정보를 학습한 딥하이퍼넷 기반 TV드라마 소셜 네트워크 분석)

  • Nan, Chang-Jun;Kim, Kyung-Min;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.619-624
    • /
    • 2016
  • Social-aware video displays not only the relationships between characters but also diverse information on topics such as economics, politics and culture as a story unfolds. Particularly, the speaking habits and behavioral patterns of people in different situations are very important for the analysis of social relationships. However, when dealing with this dynamic multi-modal data, it is difficult for a computer to analyze the drama data effectively. To solve this problem, previous studies employed the deep concept hierarchy (DCH) model to automatically construct and analyze social networks in a TV drama. Nevertheless, since location knowledge was not included, they can only analyze the social network as a whole in stories. In this research, we include location knowledge and analyze the social relations in different locations. We adopt data from approximately 4400 minutes of a TV drama Friends as our dataset. We process face recognition on the characters by using a convolutional- recursive neural networks model and utilize a bag of features model to classify scenes. Then, in different scenes, we establish the social network between the characters by using a deep concept hierarchy model and analyze the change in the social network while the stories unfold.