• Title/Summary/Keyword: hyperbranched epoxy resin

Search Result 2, Processing Time 0.016 seconds

Synthesis and Characterization of Low Viscosity Aromatic Hyperbranched Polyester Epoxy Resin

  • Zhang, Daohong;Jia, Demin;Zhou, Zihu
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.289-295
    • /
    • 2009
  • Low viscosity aromatic hyperbranched polyester epoxy resin (HTBE) was synthesized by the reaction between epichlorohydrin (ECH) and carboxyl-end hyperbranched polyester (HTB) which was prepared from inexpensive materials $A_2$ (1,4-butanediol glycol, BEG) and $B_3$ (trimellitic anhydride, TMA) by pseudo one-step method. The molar mass of the HTB was calculated from its acid value by "Recursive Probability Approach". The degree of branching (DB) of the HTB was characterized by model compounds and $^1H$ NMR-minus spectrum technology, and the DB of the HTB was about $0.47{\sim}0.63$. The viscosity and epoxy equivalent weight of the HTBE were $3,600{\sim}5,000\;cp$ and lower than 540 g/mol respectively. The reaction mechanism and structure of the $AB_2$ monomer, HTB and HTBE were investigated by MS, $^1H$ NMR and FTIR spectra technology. The molecular size of HTBE is under 8.65 nm and its shape is ellipsoid-like as determined by molecular simulation.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.