Browse > Article

Synthesis and Characterization of Low Viscosity Aromatic Hyperbranched Polyester Epoxy Resin  

Zhang, Daohong (Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, South-central University for Nationalities)
Jia, Demin (College of Materials Science and Engineering, South China University of Technology)
Zhou, Zihu (Guangzhou Supe Chemical Co., LTD)
Publication Information
Macromolecular Research / v.17, no.5, 2009 , pp. 289-295 More about this Journal
Abstract
Low viscosity aromatic hyperbranched polyester epoxy resin (HTBE) was synthesized by the reaction between epichlorohydrin (ECH) and carboxyl-end hyperbranched polyester (HTB) which was prepared from inexpensive materials $A_2$ (1,4-butanediol glycol, BEG) and $B_3$ (trimellitic anhydride, TMA) by pseudo one-step method. The molar mass of the HTB was calculated from its acid value by "Recursive Probability Approach". The degree of branching (DB) of the HTB was characterized by model compounds and $^1H$ NMR-minus spectrum technology, and the DB of the HTB was about $0.47{\sim}0.63$. The viscosity and epoxy equivalent weight of the HTBE were $3,600{\sim}5,000\;cp$ and lower than 540 g/mol respectively. The reaction mechanism and structure of the $AB_2$ monomer, HTB and HTBE were investigated by MS, $^1H$ NMR and FTIR spectra technology. The molecular size of HTBE is under 8.65 nm and its shape is ellipsoid-like as determined by molecular simulation.
Keywords
hyperbranched epoxy resin; low viscosity; degree of branching; molecular simulation;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 T. Emrick, H. T. Chang, and J. M. J. Fr\acute{e}chet, J. Polym. Sci. Part A: Polym. Chem., 38, 4850 (2000)   DOI   ScienceOn
2 D. H. Zhang and D. M. Jia, Eur. Polym. J., 42, 711 (2006)   DOI   ScienceOn
3 Y. C. Ning, Structural identification of organic compounds and organic spectroscopy, second edition, Beijing, 2000
4 C. J. Hawker and J. M. J. Fr\acute{e}chet, J. Am. Chem. Soc., 112, 7638 (1990)   DOI
5 D. Y. Yan, A. H. E. Mueller, and K. Matyjaszewski, Macromolecules, 30, 7024 (1997)   DOI   ScienceOn
6 E. agar, M. Huskic, and M. igon, Macromol. Chem. Phys., 208, 1379 (2007)   DOI   ScienceOn
7 K. K. Jena, K. V. S. N. Raju, B. Prathab, and T. M. Aminabhavi, J. Phys. Chem. B, 111, 8801   DOI   ScienceOn
8 T. Emrick, H. T. Chang, and J. M. J. Fr\acute{e}chet, Polym. Bull., 45, 1 (2000)   DOI   ScienceOn
9 B. P. Kent and B. Louis, WO9619537 (1996)
10 C.G. Gong and J. M. J. Fr\acute{e}chet, Macromolecules, 33, 4997 (2000)   DOI   ScienceOn
11 R. J. Varley and T. Wendy, Polym. Int., 53, 69 (2004)   DOI   ScienceOn
12 J. M. J. Fr\acute{e}chet, C. J. Hawker, I. Gitsov, and J. W. Leon, J. M. S.-Pure Appl. Chem., A33, 1399 (1996)
13 A. Reisch, H. Komber, and B. Voit, Macromolecules, 40, 6846 (2007)   DOI   ScienceOn
14 B. Louis, B. Pettersson, and J. A. E. M   DOI   ScienceOn
15 Y. Ishida, K. Yokomachi, M. Seino, T. Hayakawa, and M. Kakimoto, Macromol. Res., 15, 147 (2007)   DOI
16 D. H. Zhang and D. M. Jia, Polym.-Plas. Tech. Eng., 45, 1005 (2006)   DOI   ScienceOn
17 D. H. Zhang and D. M. Jia, J. Appl. Polym. Sci., 101, 2504 (2006)
18 A. Fradet and M. Tessier, Macromolecules, 39, 6238 (2006)   DOI   ScienceOn
19 T. Emrick, H. T. Chang, and J. M. J. Fr\acute{e}chet, Macromolecules, 32, 6380 (1999)   DOI   ScienceOn
20 T. Emrick, H. T. Chang, and J. M. J. Fr\acute{e}chet, J. Polym. Sci. Part A: Polym. Chem., 38, 4850 (2000)   DOI   ScienceOn
21 V. Coessens, J. Pyun, and P. J. Miller, S. G. Gaynor, and K. Matyjaszewski, Macromol. Rapid Commum., 21, 103 (2000)   DOI   ScienceOn
22 R. Mezzenga, L. Boogh, and J. A. E. Manson, Comp. Sci. Tech., 61, 787 (2001)
23 W. J. Feast and X. Wang, Chin. J. Polym. Sci., 20, 585 (2002)