• Title/Summary/Keyword: hyperbolic structure

Search Result 99, Processing Time 0.025 seconds

NON-DEVELOPABLE RULED SURFACES WITH TIMELIKE RULING IN MINKOWSKI 3-SPACE

  • YANG, YUN;YU, YANHUA
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1339-1351
    • /
    • 2015
  • In this paper, using pseudo-spherical Frenet frame of pseudo-spherical curves in hyperbolic space, we define the notion of the structure functions on the non-developable ruled surfaces with timelike ruling. Then we obtain the properties of the structure functions and a complete classification of the non-developable ruled surfaces with timelike ruling in Minkowski 3-space by the theories of the structure functions.

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang;Zhihang Guo;Yimin Gong;Jianzhong Shi;Mohamed Hechmi El Ouni;Farhan Alhosny
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.175-189
    • /
    • 2023
  • The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.

Finite Element Analysis of Inverted Umbrella-type Hyperbolic Paraboloid Shell (역우산형 쌍곡포물선 쉘의 유한요소해석)

  • Kwon, Hung-Joo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • This study presents the comparisons between the analysis results based on membrane theory and finite element analysis for the inverted umbrella-type hyperbolic paraboloid shell structure. The effects of the roof angle on the roof deflections, member forces of edge beams and ribs, and shell stress are also investigated with various roof angles. Results show that the membrane theory overestimates the member forces of edge beams and ribs. On the contrary, the shell stresses are underestimated in the membrane theory when compared to the results from the finite element analysis. The deflections of roof slabs by finite element analysis show drastic increasement as the roof angle decreases.

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡포물선 대공간구조물의 지붕 풍압계수분포 특성)

  • You, Ki-Pyo;Kim, Young-Moon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.47-54
    • /
    • 2012
  • The roof surface of spatial structures is often damaged or destroyed because of its light weight roof structure and materials. Many of large scale stadiums have roof structure framed with steel truss or stay cable and wrapped or covered with membrane material Teflon, and this membrane material is easily damaged and its loss is quite serious. Through such examples, it was found that the studies on wind proof design of roofs of large space structures were not sufficiently made. This study conducted wind pressure experiment and fluid analysis in order to examine the aerodynamic characteristic of the roof shape of hyperbolic paraboloid spatial structures. Although the biggest minimum peak wind pressure coefficient was shown in the edges of the roof in the wind origin direction, it decreases with the advancement to the longitudinal direction of the roof.

Study on the Adaptability of Hyperbolic Constitutive Model for Rubble Stone (사석지반에 대한 쌍곡선 구성모델의 적용성 연구)

  • Hwang, Se-Hwan;Kim, Jong-Soo;Kwon, Oh-Kyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.53-63
    • /
    • 2002
  • Until recently the other attempts except linear elastic analysis using assumed elastic modulus had not been made in order to evaluate the settlement of the rock fill materials in Korea. Especially, it was almost impossible to predict the precise settlement of the breakwater structure made with dumped rubble stone. In this study, 3 sets of large scaled triaxial compression tests for porous basaltic quarry rocks were carried out and numerical simulation of those triaxial compression tests were performed applying non linear elastic model. Two stress-strain behaviors were compared to study the adaptability of hyperbolic constitutive model for the rubble stone. The results showed quite good agreements between the two stress-strain behaviors. Thus, the hyperbolic constitutive model is thought to be alternative approach evaluate the settlements of the loose rock-fill material.

  • PDF

Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes

  • Daikh, Ahmed Amine;Drai, Ahmed;Houari, Mohamed Sid Ahmed;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.643-656
    • /
    • 2020
  • This article presents a comprehensive static analysis of simply supported cross-ply carbon nanotubes reinforced composite (CNTRC) laminated nanobeams under various loading profiles. The nonlocal strain gradient constitutive relation is exploited to present the size-dependence of nano-scale. New higher shear deformation beam theory with hyperbolic function is proposed to satisfy the zero-shear effect at boundaries and parabolic variation through the thickness. Carbon nanotubes (CNTs), as the reinforced elements, are distributed through the beam thickness with different distribution functions, which are, uniform distribution (UD-CNTRC), V- distribution (FG-V CNTRC), O- distribution (FG-O CNTRC) and X- distribution (FG-X CNTRC). The equilibrium equations are derived, and Fourier series function are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear or sinusoidal mechanical loadings. Numerical results are obtained to present influences of CNTs reinforcement patterns, composite laminate structure, nonlocal parameter, length scale parameter, geometric parameters on center deflection ad stresses of CNTRC laminated nanobeams. The proposed model is effective in analysis and design of composite structure ranging from macro-scale to nano-scale.

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.