• Title/Summary/Keyword: hyperbolic shear deformation

Search Result 110, Processing Time 0.027 seconds

Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks (풍화암에 근입된 현장타설 말뚝의 하중 전이 특성)

  • Jeong, Sang-Seom;Cho, Sung-Han;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.85-106
    • /
    • 2000
  • The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load transfer approach. The emphasis was on quantifying the load transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in-situ measurements.

  • PDF

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.

Vibration analysis of FGM beam: Effect of the micromechanical models

  • Hadji, Lazreg
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.265-280
    • /
    • 2020
  • In this paper, a new refined hyperbolic shear deformation beam theory for the free vibration analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equations of motion are derived from the Hamilton's principle. Navier type solution method was used to obtain frequencies, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the free vibration response of a simply supported FG beams.

A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.569-578
    • /
    • 2017
  • In this research work, a simple and accurate hyperbolic plate theory for the buckling analysis of functionally graded sandwich plates is presented. The main interest of this theory is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\not=}0$), the displacement field is composed only of 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 like in the well-known "higher order shear and normal deformation theories". Thus, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Governing equations are obtained by employing the principle of minimum total potential energy. Comparison studies are performed to verify the validity of present results. A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buckling of sandwich plates with functionally graded skins. It can be concluded that the present theory is not only accurate but also simple in predicting the buckling response of sandwich plates with functionally graded skins.

Bending performance of laminated sandwich shells in hyperbolic paraboloidal form

  • Alankaya, Veysel;Erdonmez, Cengiz
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.337-346
    • /
    • 2017
  • Sandwich shells made of composite materials are the main focus on recent literature parallel to the requirements of industry. They are commonly chosen for the modern engineering applications which require moderate strength to weight ratio without dependence on conventional manufacturing techniques. The investigations on hyperbolic paraboloidal formed sandwich composite shells are limited in the literature contrary to shells that have a number of studies, consisting of doubly curved surfaces, arbitrary boundaries and laminations. Because of the lack of contributive data in the literature, the aim of this study is to present the effects of curvature on hyperbolic paraboloidal formed, layered sandwich composite surfaces that have arbitrary boundary conditions. Analytical solution methodology for the analyses of stresses and deformations is based on Third Order Shear Deformation Theory (TSDT). Double Fourier series, which are specialized for boundary discontinuity, are used to solve highly coupled linear partial differential equations. Numerical solutions showing the effects of shell geometry are presented to provide benchmark results.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory

  • Bennai, Riadh;Atmane, Hassen Ait;Ayache, Belqassim;Tounsi, Abdelouahed;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.547-561
    • /
    • 2019
  • In this work, a new analytical approach using a theory of a high order hyperbolic shear deformation theory (HSDT) has been developed to study the free vibration of plates of functionally graduated material (FGM). This theory takes into account the effect of stretching the thickness. In contrast to other conventional shear deformation theories, the present work includes a new displacement field that introduces indeterminate integral variables. During the manufacturing process of these plates defects can appear as porosity. The latter can question and modify the global behavior of such plates. The materials constituting the plate are assumed to be gradually variable in the direction of height according to a simple power law distribution in terms of the volume fractions of the constituents. The motion equations are derived by the Hamilton principle. Analytical solutions for free vibration analysis are obtained for simply supported plates. The effects of stretching, the porosity parameter, the power law index and the length / thickness ratio on the fundamental frequencies of the FGM plates are studied in detail.

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

Elastic buckling performance of FG porous plates embedded between CNTRC piezoelectric patches based on a novel quasi 3D-HSDT in hygrothermal environment

  • Yujie Zhang;Zhihang Guo;Yimin Gong;Jianzhong Shi;Mohamed Hechmi El Ouni;Farhan Alhosny
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.175-189
    • /
    • 2023
  • The under-evaluation structure includes a functionally graded porous (FGP) core which is confined by two piezoelectric carbon nanotubes reinforced composite (CNTRC) layers. The whole structure rests on the Pasternak foundation. Using quasi-3D hyperbolic shear deformation theory, governing equations of a sandwich plate are driven. Moreover, face sheets are subjected to the electric field and the whole model is under thermal loading. The properties of all layers alter continuously along with thickness direction due to the CNTs and pores distributions. By conducting the current study, the results emerged in detail to assess the effects of different parameters on buckling of structure. As instance, it is revealed that highest and lowest critical buckling load and consequently stiffness, is due to the V-A and A-V CNTs dispersion type, respectively. Furthermore, it is revealed that by porosity coefficient enhancement, critical buckling load and consequently, stiffness reduces dramatically. Current paper results can be used in various high-tech industries as aerospace factories.

Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory

  • Shokravi, Maryam
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.327-334
    • /
    • 2018
  • In this paper, dynamic buckling of the smart subjected to blast load subjected to electric field is studied. The sandwich structure is rested on Pasternak foundation with springs and shear elements. Applying piezoelasticity theory and hyperbolic shear deformation beam theory (HSDBT), the motion equations are derived by energy method. For calculating the dynamic instability region (DIR) of the sandwich structure, differential quadrature method (DQM) along with Bolotin method is used. The aim of this study is to investigate the effects of applied voltage, geometrical parameters of structure and boundary conditions on the DIR of the structure. The results show that applying negative voltage, the DIR will be happened at higher excitation frequencies. In addition, the clamped-clamped beam leads to higher excitation frequency with respect to simply supported boundary condition.