• 제목/요약/키워드: hyperbolic equilibrium point

검색결과 4건 처리시간 0.046초

철근콘크리트 쌍곡냉각탑의 설계 및 해석 (Design and Analysis of Reinforced Concrete Hyperbolic Cooling)

  • 장현옥;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i.e., for each sampling point, from the equilibrium between applied and internal forces. Based on nonlinear analyses performed in a hyperbolic cooling tower, the analytically calculated ultimate load exceeded the design ultimate load from 50% to 55% for an analysis with relatively low to high tension stiffening, cases $\gamma$=10 and 15. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem, This shows the adequacy of th current practice at least for this cooling tower shell case studied. To generalize the conclusion more designs - analyses should be reformed with different shell configurations.

  • PDF

막응력과 휨을 고려한 RC 쉘의 설계와 극한거동 (Combined membrane and flexural reinforcement design in RC shells and ultimate behavior)

  • 민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.405-411
    • /
    • 1998
  • An iterative numerical computational algorithm is presented to design a plate of shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i. e., for each sampling point, from the equilibrium between applied and internal forces. One case of design is performed for a hyperbolic paraboloid saddle shell (originally used by Lin and Scordelis) to check the design strength against a consistent design load, therefore, to verify the adequacy of design practice for reinforced concrete shells. Based on nonlinear analyses performed, the analytically calculated ultimate load exceeded the design ultimate load from 14-43% for an analysis with relatively low to high tension stiffening, ${\gamma}$ =5~20 cases. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

An Analytical Approximation for the Pull-Out Frequency of a PLL Employing a Sinusoidal Phase Detector

  • Huque, Abu-Sayeed;Stensby, John
    • ETRI Journal
    • /
    • 제35권2호
    • /
    • pp.218-225
    • /
    • 2013
  • The pull-out frequency of a second-order phase lock loop (PLL) is an important parameter that quantifies the loop's ability to stay frequency locked under abrupt changes in the reference input frequency. In most cases, this must be determined numerically or approximated using asymptotic techniques, both of which require special knowledge, skills, and tools. An approximating formula is derived analytically for computing the pull-out frequency for a second-order Type II PLL that employs a sinusoidal characteristic phase detector. The pull-out frequency of such PLLs can be easily approximated to satisfactory accuracy with this formula using a modern scientific calculator.

이종금속간의 마멸에 관한 이론적 연구 (A study on theoretical analysis of wear between different metals)

  • 신문교;이우환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.136-145
    • /
    • 1986
  • The perfect and accurate methods to control the wear are not made clear so far. For this phenomenon only mating surface has been studied. In order to control the wear the essence of it has to be made clear. It is reported that adhesive wear might occure as a result of plastic deformation, the fracture and removal or transfer asperities on close contacting surfaces. On this view point the plastic flow was attempted to compare with fluid or electromagnetic flow. The partial differential equations of equilibrium for the plane strain deformation will make use of the method of characteristics. The characteristic curves or characteristics of the hyperbolic equation coincide with the slip lines by R. Hill's papers. By Hencky's stress equation, it is evident that if P and .phi. are prescribed for a boundary condition then it may be possible to proceed along constant .alpha. and .betha. lines to determine the value of the hydrostatic pressure everywhere in the slip line field net work. A wedge formation mechanism has been considered for an explanation of this matters. The analysis shows that there is a critical value, which depends on the hardness ratio and the shear stress on the interface, for the top angle of asperity is less than this critical value, the asperity can yield plastically despite of being harder than the mating surface.

  • PDF