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The pull-out frequency of a second-order phase lock 
loop (PLL) is an important parameter that quantifies the 
loop’s ability to stay frequency locked under abrupt 
changes in the reference input frequency. In most cases, 
this must be determined numerically or approximated 
using asymptotic techniques, both of which require special 
knowledge, skills, and tools. An approximating formula is 
derived analytically for computing the pull-out frequency 
for a second-order Type II PLL that employs a sinusoidal 
characteristic phase detector. The pull-out frequency of 
such PLLs can be easily approximated to satisfactory 
accuracy with this formula using a modern scientific 
calculator. 
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I. Introduction 

A PLL is an essential component in the synchronization 
block in many data communication systems. System model 
analysis is a standard practice in the PLL design effort, just as it 
is in the design processes of many other branches of 
engineering. Among the existing models, the second-order 
PLL models remain the most useful for most applications. 
Even in the second-order PLL models, there are two kinds, 
known as the Type I and Type II models. Due to the simplicity 
of behavioral analysis combined with adequately satisfactory 
performance for most applications, Type II models stand out as 
the starting point for almost all PLL design efforts. A sinusoidal 
phase detector (PD) in the PLL system architecture has been 
the most common type of PD, though other kinds, such as 
triangular, tanlog, and so on, are not rare in modern PLLs.  

The pull-out frequency is a very important parameter for a 
second-order Type II PLL. It is a measure of the loop’s ability 
to relock in the same cycle, when an abrupt change in 
frequency is experienced at the input reference and/or at the 
output of the voltage controlled oscillator (VCO) under a 
locked condition. In many systems, such as synchronous block 
data transfer and training pulse retrieval, loss of cycle(s), also 
known as the cycle-slip, cannot be tolerated between the loss of 
lock and the relocking back to the reference frequency by the 
PLL. 

In the literature, there exists an empirical formula, deduced 
by Viterbi, to approximate the pull-out frequency of a second-
order Type II PLL containing a sinusoidal PD [1], [2]. 
However, there have not been any known analytical 
approaches to derive either an exact or an approximating 
formula to calculate the same. This paper proposes an 
analytically derived formula, to approximate the pull-out 
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frequency of a second-order Type II PLL that employs a 
sinusoidal PD, which outperforms the existing empirical 
formula for most parts of the practical range of the loop 
parameter(s). The authors have also derived an exact formula 
to calculate the same parameter for the loops employing the 
triangular PD [3]. 

Section II depicts a block diagram and the associated system 
model of a second-order Type II PLL employing a sinusoidal 
PD. It then continues with the derivation of the system equation 
for said PLL.  

Section III starts with finding the equilibrium points and their 
nature, which determine the local behavior of the system 
around the equilibrium points. Since the system is nonlinear, it 
is not surprising that the solution may not be found in a closed 
form. Therefore, a standard technique in analyzing second-
order nonlinear systems, known as the phase portrait, is used 
to analyze the dynamical behavior of the systems. 

Section IV introduces the definition of the pull-out frequency 
(Ωpo) in light of the phase portrait and also briefly discusses the 
importance of this parameter in real applications. 

Section V contains an analytical approach to derive an 
approximating formula to calculate Ωpo for a second-order PLL 
containing a sinusoidal PD. 

Section VI validates the derived formula against the 
numerically calculated results. It also compares the pull-out 
frequency approximated by this formula with the 
approximation produced by the existing empirical formula. 

Section VII highlights a few applications in which the pull-
out frequency is directly used. Finally, some light is shed on 
how the derived formula outperforms the existing empirical 
formula.  

II. System Model for Second-Order Type II PLL 
Employing Sinusoidal PD  

A block diagram for a second-order Type II PLL containing 
a sinusoidal PD, implemented commonly as an analog 
multiplier, is shown in Fig. 1. Here, the sinusoidal reference 
input (vref) and the VCO output (vVCO) are fed to the PD. 

In Fig. 1, θi and θv are the instantaneous phase of the 
reference input and that of the VCO output signal, respectively, 
where ωi and ω0 are the frequency of the reference input and 
center (quiescent) frequency of the VCO, respectively. The 
difference between the two input phases to the PD is known as 
the phase error, which is defined as 

( ) ( ) ( ).i vt t tφ θ θ= −              (1) 

The PD produces a signal ( ),g φ which is a function of the 
phase error, while for sinusoidal PD it is given as 

 

Fig. 1. System model of second-order Type II PLL employing 
sinusoidal PD. 
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( ) sin .g φ φ=                    (2) 

Thus, the input signal to the loop filter can be described as  

1( ) ( ),x t K g φ=                   (3) 

where K1 is known as the PD gain. For a second-order Type II 
PLL, the transfer function of the loop filter is defined as 

2( ) 1 ,aF s K
s

⎛ ⎞= +⎜ ⎟
⎝ ⎠

               (4) 

where K2 is known as the loop filter gain and the positive 
constant a (a > 0 in practice) is known as the integrator gain. 
By taking the inverse Laplace transform of (4), the transfer 
function can be represented in the time domain, assuming zero 
initial condition, e(0) = 0, as 

2( ) ( ).d de t K a x t
dt dt

⎛ ⎞= +⎜ ⎟
⎝ ⎠

          (5) 

Here, e(t), the output of the loop filter feeding into the VCO, is 
commonly known as the error signal or the control voltage. A 
standard way to mathematically model a VCO is 

0 3 ( ),vd K e t
dt
θ ω= +               (6) 

where K3 is called the VCO gain [2]. This implies that the 
frequency of the VCO is tuned around its center frequency  
(ω0) by the control voltage e(t). The derivation of the overall 
system model can be greatly simplified by redefining two new 
relative phase terms as 

1 0 0( ) ,i it t tθ θ ω ω ω ωΔ= − = − =         (7) 

2 0 .v tθ θ ω= −                    (8) 

Here, θ1 and θ2 are the relative instantaneous phase of the 
reference input and that of the VCO output signal. The 
difference between the reference frequency (ωi) and the center 
frequency of the VCO (ω0) is known as the detuning parameter 
(ωΔ) in the PLL literature. Thus, the phase error at the output of  
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Fig. 2. Sinusoidal PD output characteristic. 
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the PD can also be redefined as 

1 2( ) ( ) ( ).t t tφ θ θ= −                (9) 

By using (8) as a substitute in (6), the control voltage can be 
expressed as 

2

3

1( ) .
d

e t
K dt

θ
=               (10) 

Also, using (10) and (3) as substitutes in (5) yields 

2
2 1

3

1 ( ).dd dK a K g
dt K dt dt

θ φ
⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

          (11) 

Now, using (9) and redefining G ≡ K1K2K3 as the closed loop 
gain of the system, (11) can be written as 

1( ) ( ).d d dG a g
dt dt dt

φ θ φ⎡ ⎤ ⎡ ⎤− = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
        (12) 

By using (7), (12) can be further simplified as 
2

2 ( ) ( ) 0d dG g Gag
dt dt

φ φ φ+ + = .            (13) 

Finally, by normalizing the independent variable by the 
closed loop gain as τ = tG, the normalized system equation can 
be expressed as 

2

2 ( ) ( ) 0d dg a g
d dφ

φ φφ φ
τ τ

+ + =´ ,            (14) 

where a′=a/G is the normalized integrator gain and 

( ) ( )dg g
dφ φ φ

φ
≡ [1], [2]. Figure 2 shows the PD output 

( ) sing φ φ= and its derivative ( ) cosgφ φ φ=  for a sinusoidal 
PD, and, by inserting them in (14), the dynamics of a gain 
normalized second-order Type II PLL can be described by [1], 
[2], [4]: 

2

2 cos sin 0d d a
d d

φ φφ φ
τ τ

+ + =´ .        (15) 

This second-order nonlinear equation, like many other 

nonlinear systems, does not have a closed form solution. 
Therefore, the phase portrait is used to analyze the behavior of 
this system. However, the location and the type of the 
equilibrium points describe the local behavior around them as 
long as the equilibrium points are hyperbolic. At times, this 
local behavior may be extended to get some idea of the global 
behavior of the system as well. Furthermore, because of the 
presence of the sinusoidal (2π-periodic) nonlinearity in the 
system equation, it is obvious that the phase portrait of the 
system will manifest similar periodicity. Thus, the phase 
portrait of such a system can be completely visualized by 
wrapping it on the surface of a cylinder of unity radius [5]. 
Therefore, the behavioral study of the system can be restricted 
in one period, sometimes also known as a cell, without the loss 
of generality.  

It is worth mentioning that the system model derived above 
precludes the presence of noise at any point in the loop. 
Therefore, the following analysis will assume a noiseless 
operating environment. 

III. System Dynamics in Phase Plane 

To be able to take advantage of the phase plane, the 
nonlinear second-order (15) must be decomposed in a set of 
two first-order simultaneous equations as 

,d
d

φ φ
τ

=                   (16a) 

cos sin ,d a
d

φ φ φ φ
τ

′= − −            (16b) 

where φ  is the frequency error. 
The equilibrium points for the above system can be found by 

equating the right-hand sides of (16) to zero, which yields 

0φ = ,                    (17) 

,nφ π=                    (18) 

where n=0, ±1, ±2, ±3,…. Therefore, the two equilibrium 

points in an arbitrary cell, defined as 3 ,
2 2
π πφ⎛ ⎞− ≤ ≤⎜ ⎟

⎝ ⎠
are 

( , ) (0,0)φ φ =  and ( , ) ( ,0).φ φ π=  
Now, by linearizing the nonlinear system described by (16) 

around the first equilibrium point at ( , ) (0,0),φ φ =  the 
constant coefficient matrix of the corresponding linear 
homogeneous system can be found as  

0

0 1
.

1
A

a
⎡ ⎤

= ⎢ ⎥− −⎣ ⎦´
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The two distinct eigenvalues of this matrix can be found as 

01
1 ( 1 4 1),
2

j aλ = − − −´            (19a) 

02
1 ( 1 4 1).
2

j aλ = − + −´            (19b) 

The negative real part of the complex eigenvalues indicates 
that the trajectories approach the equilibrium point as time 
approaches infinity and the imaginary part, for a′ > 1/4, 
indicates the rotational feature of the trajectories. Thus, the 
equilibrium point at ( , ) (0,0)φ φ = is a spiral stable node, more 
commonly known as a focus. Further analysis, by 
decomposing the (real) component vectors of the complex 
eigenvector associated with λ0 into two orthogonal vectors in 
the phase plane, can show that the direction of rotation of the 
trajectories around the focus is clockwise [5]. However, for   
a′ ≤ 1/4, both of these eigenvalues become real negative and, 
therefore, the trajectories lose the spiral features and the 
equilibrium point turns into a regular stable node, more 
commonly known as a sink. According to a fundamental 
theory of differential equations, sometimes known as the 
linearization theorem, the nonlinear flow is conjugate to the 
flow of the linearized system in a small neighborhood of the 
equilibrium point as long as the equilibrium point is hyperbolic 
[6], [7]. Figure 4 shows a representative phase portrait for the 
original system, drawn with Matlab for a′ = 0.5. Only one 
focus at the origin is shown in the figure, though the other foci 
are located to the right as well as to the left of it, each at a 2π 
interval.  

Similarly, by linearizing the nonlinear system, described by 
(16), around the other equilibrium point at ( , ) ( ,0)φ φ π= , the 
constant coefficient matrix of the corresponding linear 
homogeneous system can be found as  

0 1
.

1
A

aπ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦´

 

The two distinct eigenvalues of this matrix can be found as 

 1
1 (1 4 1),
2

aπλ = − +´              (20a) 

2
1 (1 4 1).
2

aπλ = + +´              (20b) 

Since the positive normalized integrator gain (a′ > 0) implies 
that λπ2 > 0 >λπ1, the equilibrium point at ( , ) ( ,0)φ φ π= is a 
saddle point [6], [7]. Figure 3 shows the saddle point in the 
phase portrait of the linearized system. L1 and L2 in Fig. 3 are 
the eigenvectors of the constant coefficient matrix Aπ . The 
four separatrices associated with the saddle point lie on the four 
half-lines, disjointed at the saddle point, denoted by L1 and L2.  

These eigenvectors, which coincide with the separatrices, 
can be found by shifting the origin to the saddle point at  

 

Fig. 3. Phase portrait of corresponding linearized system around 
saddle point, for a' = 0.5. 
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Fig. 4. Typical phase portrait of second-order Type II PLL 
employing sinusoidal PD. 
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( , ) ( ,0)φ φ π= . Thus, it can be shown that the two half-line 
separatrices (stable lines) that approach the saddle point as time 
approaches infinity, residing on the eigenvector L1, has a slope 
of  

1 (1 4 1)
2

m a− = − +´ .              (21a) 

For a′ > 0, m─ is negative and this eigenvector is tangent to 
the trajectories sp11 and sp12 of the original nonlinear system, 
at the saddle point, as shown in Fig. 4. Here in the naming 
convention of the trajectories, the first subscript identifies one 
of the two saddle points shown in the figure and the second 
subscript distinguishes between the upper and lower half-
planes. Interestingly, the above-mentioned trajectories, namely, 
sp11 and sp12, remain as separatrices even in the nonlinear 
system. Thus, any solution of the original nonlinear system that 
starts below sp11 (alternatively, above sp12) will approach the 
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focus at the origin (alternatively, the focus at ( , ) (2 ,0))φ φ π= . 
On the other hand, any solution that starts above sp11 
(alternatively, below sp12) will approach one of the foci 
located at every 2π interval to the right of the focus at the origin 
(alternatively, to the left of the focus at ( , ) (2 ,0))φ φ π= , 
giving rise to an event called cycle(s) slip in the PLL literature. 
Similar is true for the pair of separatrices sp21 and sp22, 
associated with the second saddle point shown in Fig. 4, 
located at ( , ) ( ,0)φ φ π= − and so on.  

Likewise, it can be shown that the two half-line separatrices 
(unstable lines), which move away from the saddle point as 
time approaches infinity, residing on the eigenvector L2 have a 
slope of  

1 (1 4 1).
2

m a+ = + +´            (21b) 

For a′ > 0, m+ is positive and this eigenvector is tangent to 
the trajectories sp_tj11 and sp_tj12 of the original nonlinear 
system, at the saddle point, as shown in Fig. 4. However, the 
above-mentioned trajectories, namely, sp_tj11 and sp_tj12, do 
not remain as separatrices (unstable) for the nonlinear system  
outside the small neighborhood around the saddle point at 
( , ) ( ,0)φ φ π= . The trajectory sp_tj11 approaches the focus at 
( , ) (2 ,0)φ φ π= and the other trajectory sp_tj12 approaches 
the focus at the origin, as time approaches infinity, as shown 
in Fig. 4. This phenomenon is known as the hangup [8]. 
Similar is true for the saddle points in every other cell in the 
phase portrait. 

In summary, as time approaches infinity, any initial point on 
the phase plane approaches one of the foci, except for those 
that lie on one of the separatrices, for example, sp11, sp12, 
sp21, sp22, and so on, as shown in Fig. 4. In other words, for a 
second-order Type II PLL, the foci are the global attracting 
points for the entire phase plane, except for the points residing on 
the separatrices. Thus, the entire phase plane becomes the pull-in 
range for such PLLs, which is indeed a very attractive feature [1]. 
It is also interesting to notice the symmetry of the phase portrait 
shown in Fig. 4 for such a system. In other words, a trajectory 
remains a trajectory when both φ-axis and φ -axis are negated 
[7].  

IV. Pull-Out Frequency 

The pull-out frequency is defined as the maximum value of 
the input reference frequency step that can be applied to a 
phase-locked PLL, yet the loop is able to relock without 
slipping a cycle. In light of the phase portrait, it can be defined 
as the frequency axis intercept by the separatrix. Given the 
symmetry of the phase portrait mentioned above, both the 
upper and the lower half-planes would generate the same result. 

For the frequency modulated systems, in particular, this 
specific parameter may dictate the allowable band for 
frequency swing or vice versa. It is important to note here that 
the notion of pull-out frequency, as it is defined for a Type II 
PLL, has not been generalized to the case of a Type I PLL. In 
fact, such a generalization may not be possible since phase 
plane structure for a Type I PLL generally changes with 
variations in ωΔ = ωi ─ ω0, the loop detuning parameter. As ωΔ 

changes, equilibrium point locations change, and bifurcations 
can occur [1], [2], [4].  

V. Derivation of Formula to Approximate Pull-Out 
Frequency 

For convenience, by substituting xφ = and yφ =  in (16), 
we get 

sincos .dy xx a
dx y

= − − ´             (22) 

The intent here is to find the intercept of the y-axis, φ -axis 
in Fig. 4, by the separatrix. Therefore, integrating (22) in that 
range produces 

0 0 0

sincos .dy xdx xdx a dx
dx y

π π π
= − −∫ ∫ ∫´       (23) 

We know from section II that ( ) ( ) 0.yφ π π= =  
Substituting this in the above equation yields 

0

sin(0) .xy a dx
y

π
= ∫´              (24) 

Since the integral on the right-hand side does not have a 
closed-form solution, we must resort to an approximation 
technique to calculate it. 

Let us expand the function y(x) around the saddle point at   
x = π in an asymptotic series, also known as the Poincaré 
expansion [9], as 

2

3

( ) ( )( ) ( ) ( ) ( )
1! 2!

( ) ( )
3!

        

y yy x y x x

y x

π ππ π π

π π

= + − + −

+ − +

´ ´´

´´´
...

    (25) 

Substituting y(π) = 0 and redefining 1
( ) 1 ,
1! 1! x

y dyk
dx π

π
=

≡ =´  

2

2 2

( ) 1 ,
2! 2! x

y d yk
dx π

π

=

≡ =´´ 3

3 3

( ) 1 ,
3! 3! x

y d yk
dx π

π

=

≡ =´´´ and so 

on, (25) can be rewritten as 
2 3

1 2 3( ) ( ) ( ) ( )y x k x k x k xπ π π= − + − + − + ...    (26) 

Differentiating both sides with respect to x yields 
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 2 3
1 2 3 42 ( ) 3 ( ) 4 ( ) ...dy k k x k x k x

dx
π π π= + − + − + − + (27) 

Likewise, the two trigonometric functions cosx and sinx can 
also be expanded, respectively, around the same point, using 
the Taylor series as  

2

3

sin( ) cos( )cos( ) cos( ) ( ) ( )
1! 2!

sin( ) ( ) ...
3!

           

x x x

x

π ππ π π

π π

= − − − −

+ − +
  (28) 

and 

2

3

cos( ) sin( )sin( ) sin( ) ( ) ( )
1! 2!

cos( ) ( ) ...
3!

           -

x x x

x

π ππ π π

π π

= + − − −

− +
  (29) 

Using (26)-(29) as substitutes in (22) gives 
2 3

1 2 3 4

2

3

2

2 3
1 2 3

2 ( ) 3 ( ) 4 ( ) ...
sin( ) cos( )cos( ) ( ) ( )

1! 2!
sin( ) ( ) ...

3!
cos( ) sin( )sin( ) ( ) ( ) ...

1! 2!
( ) ( ) ( ) ...

  

       

  

k k x k x k x

x x

x

x x
a

k x k x k x

π π π
π ππ π π

π π

π ππ π π

π π π

+ − + − + − +

⎡= − − − − −⎢⎣
⎤+ − + ⎥⎦

+ − − − −
−

− + − + − +
´

  (30) 

After cross multiplying and rearranging, (30) becomes 
2 3

1 2 3 4 1
2 3

2 3

2 2 3
1 2 3

3

2 ( ) 3 ( ) 4 ( ) ...][ ( )

( ) ( ) ...]
11 ( ) ... ( ) ( ) ( ) ...]
2

1( ) ( ) ...
6

k k x k x k x k x

k x k x

x k x k x k x

a x x

π π π π
π π

π π π π

π π

+ − + − + − + −

+ − + − +

⎡ ⎤= − − + − + − + − +⎢ ⎥⎣ ⎦
⎡ ⎤+ − − − +⎢ ⎥⎣ ⎦

  [

   

[

  ´

(31) 
Now, equating the coefficients of (x − π) from both sides of 

(31) yields 
2

1 1
2

1 1

1
1 (1 4 1).
2

    k k a

k k a

k a

= +

⇒ − −

⇒ = ± +

´

´= 0

´

             (32) 

As mentioned in section III, the separatrix of interest has a 
negative slope (m−) at the saddle point  
( , ) ( , ) ( ,0),x yφ φ π≡ =  and it is that slope according to the 
definition of k1. Therefore, the value to keep is 

1
1 (1 4 1)
2

k m a−≡ = − +´ .             (33) 

 

Fig. 5. Four-interval Simpson’s rule to approximate integrals. 

f(x) 

a x1 x2 x3 b
x

 
 
Equating the coefficients of 2( )x π−  from both sides of (31) 
yields 

1 2 1 2 2

2 1

2
(3 1) 0.

   k k k k k
k k

+ =
⇒ − =

               (34) 

Since negative k1 implies that 1
1 ,
3

k ≠ therefore, k2 = 0. 

Equating the coefficients of 3( )x π− from both sides of (31) 
yields 

2 1
1 3 2 1 3 32 3 3 .

2 6
k ak k k k k k

′
+ + = − −         (35) 

After inserting k2=0 and simplifying the above equation, k3 
can be expressed as 

1
3

1

3
.

6(1 4 )
a k

k
k

+
=

−
´

              (36) 

Thus, the function y(x) can be approximated by the first three 
terms in (26) as 

31
1

1

3
( ) ( ) ( ) ,

6(1 4 )
a k

y x k x x
k

π π+
≈ − + −

−
´

     (37) 

where k1 is given in (33).  
 Now, we are ready to approximate the integral in (24) using 

the four-interval Simpson’s rule, which says 

1 2 3( ) [ ( ) 4 ( ) 2 ( ) 4 ( ) ( )],
3

b

a

hf x f a f x f x f x f b≈ + + + +∫ (38) 

where, h = (b−a)/4, x1 = a + h, x2 = a + 2h, and x3 = a + 3h, as  

shown in Fig. 5 [10]. In our case, sin( ) ,
( )

xx
y x

= 0,a = ,b π=  

1 2/ 4, 2 / 4,x xπ π= =  and 3 3 / 4x π= .  
Substituting these and using (37) in (38), we get  
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3
1

1
1

3 3
1 1

1 1
1 1

(0)

4sin
sin(0) 4

12 (0) 3 3 3
4 6(1 4 ) 4

2 32sin 4sin
sin( )4 4 .

( )2 3 2 3
4 6(1 4 ) 4 4 6(1 4 ) 4

y

a
y a kk

k

ya k a kk k
k k

π
π

π π

π π
π

ππ π π π

⎡ ⎛ ⎞⎢ ⎜ ⎟
⎝ ⎠⎢′≈ +⎢ ′ + −⎛ ⎞ ⎛ ⎞⎢ − +⎜ ⎟ ⎜ ⎟−⎢ ⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞ ⎛ ⎞ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎥+ + + ⎥′ ′+ − + −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎥− + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎦

 (39) 
Now, the non-zero pull-out frequency implies that φ (0) = 

y(0) ≠ 0. Therefore, the first term in (39) drops out. The last 

term sin( )
( )y

π
π

 is in 0
0

 form. Applying L’Hospital’s rule, its 

limiting value at x = π− can be evaluated as 

1

cos( ) 1
( ) ky

π
π

−

−

−=
´

.               (40) 

Thus, the pull-out frequency can be expressed as 
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1
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⎡ ⎛ ⎞⎢ ⎜ ⎟
⎝ ⎠⎢′ ′Ω = = ≈ − ⎢ ′ +⎛ ⎞ ⎛ ⎞⎢ +⎜ ⎟ ⎜ ⎟−⎢ ⎝ ⎠ ⎝ ⎠⎣

⎤⎛ ⎞ ⎛ ⎞ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎥+ + + ⎥′ ′+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎦

 (41) 
where k1 is given in (33). 

It is to be noted here that the pull-out frequency in (41) is 
normalized by the system closed loop gain G, as shown in Fig. 
4. Therefore, it must be multiplied by G to obtain the absolute 
value of the pull-out frequency. 

VI. Comparison between Derived and Existing 
Empirical Formula  

As mentioned in section I, Viterbi empirically derived a 
formula to calculate the pull-out frequency of a second-order 
PLL employing a sinusoidal PD, which is [1], [2] 

1.85(0.5 ).aΩ = +po´ ´  

However, in the literature, no analytical approach has been 
found to derive a formula for Ω′po. Table 1 shows the 
comparison of the gain normalized pull-out frequency for the 
entire practical range of a′, calculated using three different 
methods. The second column represents the numerically 
calculated values of the pull-out frequency using Matlab. A  

Table 1. Comparison of pull-out frequency from three different 
methods. 

a' 
Numerical 
simulation 

Empirical
formula

%err 
(EF*) 

Derived 
formula

%err 
(DF**) 

0.1 1.474 1.469 0.325 1.567 6.275 

0.2 1.725 1.705 1.159 1.753 1.606 

0.3 1.883 1.886 0.154 1.913 1.604 

0.35 1.976 1.965 0.562 1.987 0.541 

0.4 2.052 2.038 0.662 2.057 0.224 

0.5 2.181 2.173 0.376 2.187 0.284 

0.6 2.313 2.294 0.808 2.308 0.216 

0.7 2.418 2.406 0.496 2.421 0.120 

0.8 2.542 2.51 1.259 2.527 0.582 

0.9 2.638 2.608 1.152 2.628 0.375 

1.0 2.743 2.7 1.567 2.724 0.685 

1.1 2.850 2.788 2.179 2.816 1.182 

1.2 2.927 2.872 1.885 2.905 0.765 

1.3 3.021 2.952 2.274 2.99 1.032 

1.4 3.091 3.03 1.979 3.072 0.614 

1.5 3.220 3.105 2.984 3.152 1.509 

1.6 3.251 3.177 2.282 3.229 0.680 

1.7 3.339 3.247 2.758 3.304 1.051 

1.8 3.421 3.315 3.098 3.377 1.286 

1.9 3.493 3.381 3.203 3.448 1.282 

2.0 3.570 3.446 3.485 3.518 1.468 
*% error when results from empirical formula compared with numerical results 
**% error when results from derived formula compared with numerical results  

detailed procedure for a numerical approximation technique 
can be found in [11]. The third column denotes the value 
calculated using the empirical formula described by (32). The 
fourth column shows the percentage error when the values 
calculated using the empirical formula is compared with the 
simulation results. The fifth column displays the value 
calculated by the derived formula described by (31), whereas 
the last column lists the percentage error when these values are 
compared with the simulation results. 

VII. Conclusion 

 It is evident from Table 1 that the derived formula 
outperforms the empirical formula for a′ ≥ 0.35 and that the 
percentage error when compared against the simulated results 
is less than 1.5%. For very low values of the loop parameter,  
a′ < 0.35, the empirical formula calculates the normalized pull-
out frequency with better accuracy, though such values of a′ are 
rare in practice and only found in the applications in which 
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jitter tolerance is extremely tight. For such low values of 
normalized integrator gain (a′), the contribution from the third-
order term (k3) in the asymptotic series becomes insignificant 
and the integral approximation from the four-interval 
Simpson’s rule becomes coarse and thus contribute to the poor 
performance of the derived formula.  

In the PLL design practice, a′=0.5 is a standard starting value 
for normalized integrator gain. This comes from the damping 
coefficient ξ=0.707, the most commonly used value in the 
linear control systems, which offers a satisfactory trade-off 
between the overshoot and the settling time. It is also to be 
noted here that the linear model of the PLL is not adequate 
when the absolute value of the phase error grows beyond 30o. 
Most commonly used values for the normalized integrator gain 
stay within 0.5 to 1.5 to accommodate a larger phase error.  

The improvement achieved from the new formula is 
significant for the high gain (G) systems, when the gain 
normalized pull-out frequency is multiplied by G to calculate 
its absolute value. For instance, the percentage error when 
using the empirical formula and the derived formula to 
calculate the gain normalized pull-out frequency, for the 
normalized integrator gain a′=1.0, are 1.152% and 0.685%, 
respectively. However, the improvement gained from the 
derived formula when compared with the empirical one is 
[(1.152 − 0.685) / 1.152] × 100% = 40%. Thus, in the case of 
large closed loop gain (G > 10), the improvement achieved by 
using the derived formula is significant when calculating the 
absolute value of the pull-out frequency. Though the derived 
formula may look overly complicated as opposed to the 
empirical one, it can still be computed easily by using a 
modern scientific calculator and is still worth the improvement. 
The formula may as well be computed easily at the Matlab 
command prompt. 
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