In this study, composites containing undoped and barium-doped Bi2WO6:Ba2+were investigated for their shielding against diagnostic X-ray. At first, Bi2WO6 and barium-doped Bi2WO6 were synthesized with different weight percentages of barium oxide through a hydrothermal process. The as-synthesized nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy (RS). After that, some shields were generated with undoped and barium-doped Bi2WO6:Ba2+ nanostructure particles incorporated into polyvinyl chloride (PVC) polymer with different thicknesses and 15% weight of the nanostructure. Finally, the prepared samples were exposed to an X-ray tube at 40, 80, and 120 kV voltages, 10 mAs and, 44.5 cm SID (i.e. the distance from the X-ray beam source to the specimen). Linear and mass attenuation coefficients were also calculated for different samples. The results indicated that, among the samples, the one with 7.5 mmol barium-doped Bi2WO6 had the most attenuation at the voltage of 40kV, and the attenuation coefficients would increase with an increase in the amount of barium. The samples with 15 and 17.5 mmol barium-doped Bi2WO6 had higher attenuation than the others at 80 and 120 kV. Moreover, the half-value layer (HVL), tenth-value layer (TVL) and 0.25 mm lead equivalent thickness were calculated for all the samples. The lowest HVL value was for the sample with 7.5 mmol barium-doped Bi2WO6. As the result clearly show, an increment in the barium-doping content leads to a decrease in both HVL and TVL. In every three voltages, 0.25 mm lead equivalent thickness of the barium-doped composites (7.5 mmol and 15 mmol) had less than the other composites. The lowest value of 0.25 mm lead equivalent thickness was 7.5 barium-doped in 40 kV voltage and 15 mmol barium-doped in 80 kV and 120 kV voltages. These results were obtained only for 15% weight of the nanostructure.
Davaasuren, Otgon-Erdene;Lee, Bum Han;Kim, Namhoon;Koh, Sang-Mo;Yoo, Bong Chul;Seo, Jung Hun
Korean Journal of Mineralogy and Petrology
/
v.34
no.2
/
pp.147-156
/
2021
We report fluid inclusion study results of copper-bearing quartz veins in Zogdor area, which is located within the Gurvansayhan island arc terrane of Southern Mongolia. At the Zogdor area, structurecontrolled copper mineralization is hosted in granodiorite-porphyry, which emplaced in the late Cretaceous formation. Within this granodiorite porphyry, copper-bearing quartz veins are associated with the hydrothermal alteration that includes quartz-epidote-magnetite, and quartz-magnetite in the propylitic zones. The veins are classified into two types, according to their mineral composition, which occur mainly as chalcopyrite, rare amounts of bornite, magnetite, and pyrite. Fluid inclusions in the quartz veins from the quartz-magnetite±chalcopyrite and quartz-epidote-magnetite veins are two-phase aqueous inclusions having bubble sizes of 5-30 vol.%, evident salinities of 2.0-22.6 wt.% NaCl, and homogenization temperatures of 107-270℃. Based on mineral assemblages of the observed veins, along with the geochemical properties and alteration faces of the host rock, fluid inclusion data show that the study area corresponds to propylitic alteration zone in the porphyry Cu related mineralization.
In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.
Je Hong Park;Si Beom Yu;Seungwon Jeong;Byeong Jun Kim;Kang Min Kim;Jeong Ho Ryu
Journal of the Korean Crystal Growth and Crystal Technology
/
v.33
no.5
/
pp.196-201
/
2023
In order to improve the efficiency of the water splitting system for hydrogen energy production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds (hydroxide, sulfide, etc.) are attracting attention as catalyst materials to replace currently used precious metals such as platinum. In this study, Ni foam, an inexpensive metal porous material, was used as a support and β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, changes in the crystal morphology, crystal structure, and water splitting characteristics of β-Ni(OH)2 microcrystals synthesized by doping Fe to improve electrochemical properties were observed, and applicability as a catalyst in a commercial water electrolysis system was examined.
Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.
Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.
So, Chil-Sup;Choi, Sang-Hoon;Chi, Se-Jung;Choi, Seon-Gyu;Shelton, Kevin L.
Economic and Environmental Geology
/
v.22
no.3
/
pp.221-235
/
1989
Gold-silver mineralization of the Goryeong-Waegwan area was deposited in three stages of quartz and calcite veins which fill fissures in Cretaceous sedimentary rocks of the Sindong Group. Radiometric dating indicates that mineralization is Late Cretaceous age(98 Ma) likely associated genetically with intrusion of a small biotite granite stock. Fluid inclusion and stable isotope data indicate that Au-Ag ore was deposited at temperatures between $280^{\circ}C$ and $230^{\circ}C$ from fluids with salinities between 1.7 and 8.7 equiv.wt.% NaCl. Evidence of boiling indicates pressures of <100 bars, corresponding to depths of 425 and 1,150m, respectively, assuming lithostatic and hydrostatic loads. Within ore stage I there is an apparent decrease in ${\delta}^{34}S$ values of $H_2S$ with paragenetic time, from +1.4 to -2.5 per mil. This pattern was likely achieved through progressive increases in pH and activity of oxygen accompanying boiling. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids(${\delta}D$ = -90 to -100 per mil; ${\delta}^{18}O$ = +3.9 to -11.4 per mil) indicate meteoric water dominance, approaching unex-changed meteoric water values. Au-Ag deposition is thought to be the result of cooling and dilution of a boiling fluid through mixing with less evolved meteoric waters.
Park, Ki-Hwa;Park, Hee-In;Eastoe, Christopher J.;Choi, Suck-Won
Economic and Environmental Geology
/
v.24
no.2
/
pp.131-150
/
1991
The Weolseong diatreme was temporally and spatially related to the intrusion of the Gadaeri granite, and was -mineralized by meteoric aqueous fluids. In the Nokdong As-Zn deposit, pyrite, aresenopyrite and sphalerite are the most abundant sulfide minerals. They are associated with minor amount of magnetite, pyrrhotite, chalcopyrite and cassiterite, and trace amounts of Pb-Sb-Bi-Ag sulphosalts. The AsZn ore probably occurred at about $350^{\circ}C$ according to fluid inclusion and compositional data estimated from the arsenic content of arsenopyrite and iron content of sphalerite intergrown with pyrrhotite + chalcopyrite + cubanite. Heating studies of fluid inclusions in quartz indicate a temperature range between 180 and $360^{\circ}C$, and freezing data indicate a salinity range from 0.8 to 4.1 eq.wt % NaCl. The coexisting assemblage pyrite + pyrrhotite + arsenopyrite suggests that $H_2S$ was the dominate reduced sulfur species, and defines fluid parameter thus: $10^{-34.5}$ < ${\alpha}_{S_2}$ < $10^{-33}$, $10^{-11}$ < $f_{S_2}$ < $10^{-8}$, -2.4 < ${\alpha}_{S_2}$ < -1.6 atm and pH= 5.2 (sericte stable) at $300^{\circ}C$. The sulfur isotope values ranged from 1.8 to 5.5% and indicate that the sulfur in the sulfides is of magmatic in origin. The carbon isotope values range from -7.8 to -11.6%, and the oxygen isotope values from the carbonates in mineralized wall rock range from 2 to 11.4%. The oxygen isotope compositions of water coexisting with calcite require an input of meteoric water. The geochemical data indicate that the ore-forming fluid probably was generated by a variety of mechanisms, including deep circulation of meteoric water driven by magmatic heat, with possible input of magniatic water and ore component.
So, Chil-Sup;Yun, Seong-Taek;Kim, Se-Hyun;Youm, Seung-Jun;Heo, Chul-Ho;Choi, Seon-Gyu
Economic and Environmental Geology
/
v.26
no.4
/
pp.433-444
/
1993
Electrum (32~73 atom. % Ag)-sulfide mineralization of the Bodeok mine in the Boseong area was deposited in two stages of mineralogically simple, massive quartz veins that fill the fractures along fault shear zones in Precambrian gneiss. Radiometric dating indicates that mineralization is Late Jurassic age ($155.9{\pm}2.3$ Ma). Fluid inclusion data show that ore mineralization was formed from $H_2O-CO_2$ fluids with variable $CO_2$ contents ($X_{CO_2}=0.0$ to 0.7) and low salinities (0.0 to 7.4 wt. % eq. NaCl) at temperatures between $200^{\circ}$ and $370^{\circ}C$. Evidence of fluid unmixing ($CO_2$ effervescence) indicates pressures up to 1 kbar. Gold-silver deposition occurred later than base-metal sulfide deposition, at temperatures near $250^{\circ}C$ and was probably a result of cooling and decreasing sulfur activity caused by sulfide precipitation and/or $H_2S$ loss (through fluid unmixing). Calculated sulfur isotope compositions of ore fluids (${\delta}^{34}S_{{\Sigma}S}=1.7$ to 3.3‰) indicate an igneous source of sulfur in hydrothermal fluids. Measured and calculated O and H isotope compositions of ore fluids (${\delta}^{18}O_{water}=4.8$ to 7.2‰, ${\delta}D_{water}=-73$ to -76‰) indicate that mesothermal auriferous fluids at Bodeok were likely mixtures of $H_2O-rich$, isotopically evolved meteoric waters and magmatic $H_2O-CO_2$ fluids.
From the Jungwon and Munkyeong areas which are among the famous producers of the carbonate-type groundwaters in Korea, various kinds of natural waters (deep groundwater, shallow groundwater and surface water) were collected between 1996 and 1997 and were studied for hydrogeochemical and environmental isotope (${\delta}^{34}S_{so4}$, ${\delta}^{18}O$, ${\delta}D$)systematics. Two types of deep groundwaters (carbonate type and alkali type) occur together in the two areas, and each shows distinct hydrogeochemical and environmental isotope characteristics. The carbonate type waters show the hydrochemical feature of the 'calcium(-sodium)-bicarbonate(-sulfate) type', whereas the alkali type water of the 'sodium-bicarbonate type'. The former type waters are characterized by lower pH, higher Eh, and higher amounts of dissolved ions (especialJy, $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $HCO_3{^-}$ and $SO_4{^{2-}}$). Two types of deep groundwaters are all saturated or supersaturated with respect to calcite. Two types of deep groundwaters were both derived from pre-thermonuclear (about more than 40 years old) meteoric waters (with lighter 0 and H isotope data than younger waters, i.e., shallow cold groundwaters and surface waters) which evolved through prolonged water-rock interaction. Based on the geologic setting, water chemistry, and environmental isotope data, however, each of these two different types of deep groundwaters represents distinct hydrologic and hydrogeochemical evolution at depths. The carbonate type groundwaters were formed through mixing with acidic waters that were derived from dissolution of pyrites in hydrothermal vein ores (for the Jungwon area water) or in anthracite coal beds (for the Munkyeong area water). If the deeply percolating meteoric waters did not meet pyrites during the circulation, only the alkali type groundwaters would form. This hydrologic and hydrogeochemical model may be successfully applied to the other carbonate type groundwaters in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.