DOI QR코드

DOI QR Code

Fluid Inclusion Study of Quartz Veins in Zogdor Copper Mineralized Area, Southern Mongolia

몽골 남부 족도르 동 광화 지역 석영맥의 유체포유물 연구

  • Davaasuren, Otgon-Erdene (Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Bum Han (Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Namhoon (Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Koh, Sang-Mo (Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources) ;
  • Seo, Jung Hun (Department of Energy and Resources Engineering, Inha University)
  • Received : 2021.06.11
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

We report fluid inclusion study results of copper-bearing quartz veins in Zogdor area, which is located within the Gurvansayhan island arc terrane of Southern Mongolia. At the Zogdor area, structurecontrolled copper mineralization is hosted in granodiorite-porphyry, which emplaced in the late Cretaceous formation. Within this granodiorite porphyry, copper-bearing quartz veins are associated with the hydrothermal alteration that includes quartz-epidote-magnetite, and quartz-magnetite in the propylitic zones. The veins are classified into two types, according to their mineral composition, which occur mainly as chalcopyrite, rare amounts of bornite, magnetite, and pyrite. Fluid inclusions in the quartz veins from the quartz-magnetite±chalcopyrite and quartz-epidote-magnetite veins are two-phase aqueous inclusions having bubble sizes of 5-30 vol.%, evident salinities of 2.0-22.6 wt.% NaCl, and homogenization temperatures of 107-270℃. Based on mineral assemblages of the observed veins, along with the geochemical properties and alteration faces of the host rock, fluid inclusion data show that the study area corresponds to propylitic alteration zone in the porphyry Cu related mineralization.

몽골 남부 구르반사이한 호상 열도 지형 내 족도르 지역의 함동 석영맥에 대한 유체포유물 연구 결과를 보고한다. 족도르 지역에는 후기 백악기 퇴적층 내에 정치된 화강섬록 반암 내에 구조적으로 제어되는 동 광화작용이 나타난다. 이러한 화강섬록 반암 내에 동 광물 함유 석영맥은 프로필리틱 변질대의 석영-녹렴석-자철석 및 석영-자철석을 포함하는 열수 변질 양상을 보인다. 석영맥은 광물 조합에 따라 두 가지 유형으로 분류되며 주로 황동석과 함께 산출되고 드물게는 반동석, 자철석, 황철석과 함께 산출된다. 석영-자철석±황동석 및 석영-녹렴석-자철석 조합의 석영맥 내 유체포유물은 기포 크기 5-30 vol.%, 염농도 2-13 wt.% NaCl, 균질화 온도 107-270℃인 2상의 수성 포유물이다. 관찰된 석영맥의 광물 조합과 모암의 지구화학적 특성 및 변질 양상 등으로 판단했을 때, 유체포유물 자료는 연구 지역이 반암동 관련 광화작용의 프로필리틱 변질 영역에 해당함을 보여준다.

Keywords

Acknowledgement

We thank Mr. Jun Hee Lee and Mr. Tongha Lee at Inha University for their assistance in microthermometry experiments. We are grateful to Dr. Sang Joon Pak and Dr. Chang Seong Kim for their careful and constructive comments, which have greatly improved the manuscript. This work was supported by the National Research Council of Science & Technology (NST) grant by the Korea government (MSIT) (No. CRC-15-06-KIGAM).

References

  1. Badarch, G., Cunningham, W.D. and Windley, B.F., 2002, A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asian. Journal of Asian Earth Sciences, 21, 87-110. https://doi.org/10.1016/S1367-9120(02)00017-2
  2. Batkhishig, B., Noriyoshi, T. and Bignall, G., 2010, Magmatism of the Shuteen Complex and Carboniferous subduction of the Gurvansaikhan terrane, South Mongolia. Journal of Asian Earth Sciences, 37, 399-411. https://doi.org/10.1016/j.jseaes.2009.10.004
  3. Blight, J.H.S., Crowley, Q.G., Petterson, M.G. and Cunningham, D., 2010, Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints. Lithos, 116, 35-52. https://doi.org/10.1016/j.lithos.2010.01.001
  4. Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D. and Steele-MacInnis, M., 2014, 13.5 - Fluid Inclusions in Hydrothermal Ore Deposits. (eds. Holland, H.D., Turekian, K.K.B.T.-T) Elsevier, Oxford, 119-142.
  5. Bodnar, R.J. and Vityk, M.O., 1994, Interpretation of Micro-thermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications, VirginiaTech, Blacksburg, 117-130.
  6. Boldbaatar, E., Nanzad, B., Sereenen, J., Locmelis, M., Osanai, Y., Batsaikhan, N., Dashtseren, K. and Zorigtbaatar, A., 2019, Geochronology and geochemistry of the intrusive suite associated with the Khatsavch porphyry Cu-Au (Mo) deposit, South Mongolia. Ore Geology Reviews, 111, 102978. https://doi.org/10.1016/j.oregeorev.2019.102978
  7. Driesner, T. and Heinrich, C.A., 2007, The system H2O-NaCl. Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000℃, 0 to 5000bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71, 4880-4901. https://doi.org/10.1016/j.gca.2006.01.033
  8. Jamiyandorj, O. and Zoljargal, A., 2010, Geological sheet map K-48-V at the scale of 1: 200,000 with brief legend description. Geological Information Center, Mineral Resources Authority of Mongolia. Ulaanbaatar. Report No. 7770.
  9. Khashgerel, B.E., Rye, R.O., Hedenquist, J.W. and Kavalieris, I., 2006, Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia. Economic Geology, 101, 503-522. https://doi.org/10.2113/gsecongeo.101.3.503
  10. Kirwin, D.J., Wilson, C.C., Turmagnai, D. and Wolfe, R., 2005, Exploration history, geology, and mineralization of the Kharmagtai gold-copper porphyry district, south Gobi region, Mongolia. IAGOD Guidebook Series, 11, 193-201.
  11. Lamb, M.A. and Badarch, G., 2001, Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: New geochemical and petrographic constraints. In Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation. (eds. Hendrix, M.S. and Davis, G.A.) Geological Society of America.
  12. Otgon-Erdene, D., 2017, Geochemical Characteristics and SHRIMP U-Pb Zircon Ages of Granitoids in Tsogttsetsii Copper Mineralization Area, Southern Mongolia. Master dissertation, University of Science and Technology.
  13. Otgon-Erdene, D., Bum Han, L., In Joon, K., Chung-Ryul, R. and Chul-Ho, H., 2016, Characteristics of the Copper Mineralization in Tsogttsetsii Area, Mongolia. Journal of the Mineralogical Society of Korea, 29, 23-34. https://doi.org/10.9727/jmsk.2016.29.1.23
  14. Otgon-Erdene, D., Kim, N., Koh, S.-M. and Lee, B.H., in preparation, Late Paleozoic granitoids in the Zogdor Cu occurrences, Southern Mongolia, and their tectonic implications: New SHRIMP zircon age dating, Lu-Hf isotopes and geochemical constraints.
  15. Perello, J., Cox, D., Garamjav, D., Sanjdorj, S., Diakov, S., Schissel, D., Munkhbat, T.O. and Oyun, G., 2001, Oyu Tolgoi, Mongolia: Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a cretaceous chalcocite blanket. Economic Geology, 96, 1407-1428. https://doi.org/10.2113/gsecongeo.96.6.1407
  16. Son, Y.-S., Kim, K.-E., Yoon, W.-J. and Cho, S.-J., 2019, Regional mineral mapping of island arc terranes in south-eastern Mongolia using multi-spectral remote sensing data. Ore Geology Reviews, 113, 103106. https://doi.org/10.1016/j.oregeorev.2019.103106
  17. Wainwright, A.J., Tosdal, R.M., Wooden, J.L., Mazdab, F.K. and Friedman, R.M., 2011, U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia. Gondwana Research, 19, 764-787. https://doi.org/10.1016/j.gr.2010.11.012
  18. Watanabe, Y. and Stein, H.J., 2000, Re-Os Ages for the Erdenet abd Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Economic Geology, 95, 1537-1542. https://doi.org/10.2113/gsecongeo.95.7.1537
  19. Wilkinson, J., 2001, Fluid inclusions in hydrothermal ore deposits. Lithos, 55, 229-272. https://doi.org/10.1016/S0024-4937(00)00047-5
  20. Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A. and Badarch, G., 2007, Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London, 164, 31-47. https://doi.org/10.1144/0016-76492006-022
  21. Zorin, Y.A., Belichenko, V.G., Turutanov, E.K., Kozhevnikov, V.M., Ruzhentsev, S.V., Dergunov, A.B., Filippova, I.B., Tomurtogoo, O., Arvisbaatar, N., Bayasgalan, T., Biambaa, C. and Khosbayar, P., 1993, The South Siberia-Central Mongolia transect. Tectonophysics, 225, 361-378. https://doi.org/10.1016/0040-1951(93)90305-4