• Title/Summary/Keyword: hydrothermal chimney

Search Result 9, Processing Time 0.024 seconds

Sulfide Chimney from the Cleft Segment, Juan de Fuca Ridge: Mineralogy and Fluid Inclusion (Juan de Fuca 해령 Cleft Segment에서 회수된 황화물 침니: 광물조성 및 유체포유물)

  • 윤성택;허철호;소칠섭;염승준;이경용
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 2002
  • In order to elucidate the growth mechanism of sulfide chimney formed as a result of seafloor hydrothermal mineralization, we carried out the mineralogical and fluid inclusion studies on the inactive, sulfide- and silica-rich chimney which has been recovered from a hydrothermal field in the Cleft segment of the Juan de Fuca Ridge. According to previous studies, many active and inactive vents are present in the Cleft segment. The sulfide- and silica-rich chimney is composed of amorphous silica, pyrite, sphalerite and wurtzite with minor amounts of chalcopyrite and marcasite. The interior part of the chimney is highly porous and represents a flow channel. Open spaces within chimneys are typically coated with colloform layers of amorphous silica. The FeS content of Zn-sulfides varies widely from 13.9 to 34.3 mole% with Fe-rich core and Fe-poor rims. This variation possibly reflects the change of physicochemical characteristics of hydrothermal fluids. Chemical and mineralogical compositions of the each growth zone are also varied, possibly due to a thermal gradient. Based on the microthermometric measurements of liquid-rich, two-phase inclusions in amorphous silica that was precipitated in the late stage of mineralization, minimum trapping temperatures are estimated to be about 1140 to 145$^{\circ}$C with the salinities between 3.2 and 4.8 wt.% NaCI equiv. Although the actual fluid temperatures of the vent are not available, this study suggests that the lowtemperature conditions were predominant during the mineralization in the hydrothermal field at Cleft segment. Comparing with the previously reported chimney types, the morphology, colloform texture, bulk chemistry, and a characteristic mineral assemblage (pyrite + marcasite + wurtzite + amorphous silica) of this chimney indicate that the chimney have been formed from a relatively low-temperature (<250$^{\circ}$C) hydrothermal fluid that was changed by sluggish fluid flow and conductive cooling.

Geochemistry of the Hydrothermal Chimneys in the Manus Basin, Southwestern Pacific Ocean (남서태평양 Manus Basin에서 산출되는 열수 분출구에 대한 지화학적 연구)

  • 이경용;최상훈;박숭현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Manus Basin, located in the equatorial western Pacific, is a back arc basin formed by collision between the IndoAustralian and the Pacific Plates. The basin is host to numerous hydrothermal vent fields and ore deposits. The basement rocks of the Manus Basin consist primarily of dacite and basaltic andesite. Some of the minerals that form the hydrothermal chimneys that were dredged on the Manus basin include pyrite, chalcopyrite, marcasite, sphalerite and galena. The chimneys can be classified into chalcopyrite dominant Cu-rich type and sphalerite dominant Zn-rich type. The concentration of Zn shows good positive correlation with that of Sb, Cd and Ag. The content of Cu, on the other hand, positively correlates with that of Mo, Mn and Co. For samples that were taken from Zn-rich chimney, a strong positive correlation is found between Au and Zn contents. The chimney also shows enrichments of Cd, Mn and Sb. On the other hand, the samples from Cu-rich chimney exhibit strong correlation among Au, Zn and Pb, and are enriched in Mo and Co concentration. Average contents of Au in Cu-rich and Znrich chimneys were 15.9 ppm and 29.0 ppm, respectively. Because of high concentration of Au with Ag and Cu, the ore deposit have high economic potential. Homogenization temperatures and salinities of fluid inclusions in anhydrite and amorphous silica from Zn-rich chimney are estimated to be l74-220$^{\circ}$C and 2.7-3.6 equiv. wt. % NaCI, respectively. These value suggest that ore forming processes were occurred at around 200$^{\circ}$C and that the oxygen fugacity changed from 2: 10$^{-39.5}$bar to -s: 10$^{-40.8}$bar and the sulfur fugacity from -s: 10$^{-14.7}$bar to 10$^{-13.4}$bar during the process. It appears that the temperature at which the ores formed on Cu-rich chimney was higher than that on Zn-rich chimney.

Electromagnetic Pulse (EMP) Shielding Effectiveness of Waveguide-Below-Cutoff (WBC) Arrays Installed in Generator Exhaust Chimney and its Effects on Gas Velocity (도파관 배열이 설치된 비상발전기 연도의 유속 예측 및 EMP 차폐평가)

  • Pang, Seung-Ki;Kim, Jae-Hun;Yook, Jong-Gwan;Kim, Yuna;Kim, Sangin;Kim, Suk-Bong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Characteristics of exhaust from chimney of electricity generator are analyzed based on CFD when Waveguide-Below-Cutoff (WBC) array is installed in order to achieve the certain level of electromagnetic pulse (EMP) shielding. The main purpose is prediction of average and maximum velocity of exhaust. The results reveal that: 1) When the specification of waveguide is given as 80-diameter, 400-length, and the gap of 20 mm, the shielding effectiveness (SE) is 140dB. The average and maximum velocity of exhaust in the chimney with WBC Array can be represented as exponential functions. 2) As the number of WBC increases, the velocity in the chimney dwindles. 3) Under the situation that WBC with 80 mm diameter is located at intervals of 20 mm, the average velocity can be approximated by $25.5344{\times}e^{(-0.0098{\times}N_{WBC})}$ with input velocity of 15 m/s. In addition, the determination coefficient is 0.915, which is sufficiently high.

The Prototype Study of Resistivity and Porosity Measurement for the Samples Collected Near Marine Hydrothermal Deposit (해저열수광상 주변 암석 시료의 공극률과 전기비저항 측정 기초실험)

  • Lee, Sang-Kyu;Lee, Seong-Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.378-387
    • /
    • 2010
  • We present the results of laboratory measurement of porosity and electrical resistivity for the samples collected near marine hydrothermal deposit to provide fundamental perspective of physical properties for future electromagnetic survey. The rock cores are sampled from the host rock, pumice, hydrothermal altered zone, and chimney. These samples are featured as easily brittle, rough surface with large pores, having components easily solvable in the water. We suggest systematic approach for measuring weights, volumes of core samples to calculate density and porosity. Measurements reveal that the resistivities of black host rock, gray host rock, pumice and chimney are 102, 39, 11, 0.1 ohm-m, respectively, when the core samples are saturated with saline water of $32,000\;{\mu}S$/cm (0.5 ohm-m) at temperature of $2.5^{\circ}C$ and these correspond to the factors of 5 for sea water, 110 for pumice and 390~1020 for host rocks with respect to the resistivity of chimney. We also confirm that resistivity of rock samples saturated with water decrease with temperature linearly over the temperature range of $20{\sim}80^{\circ}C$.

Isolation and Characterization of an Extremely Thermophilic Sulfur-metabolizing Bacterium from a Deep-sea Hydrothermal Vent System

  • Kwak, Yi-Seong;Kobayashi, Tetsuo;Akiba, Teruhiko;Horikoshi, Koki;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 1994
  • A water sample was taken from a black smoker chimney of a deep-sea hydrothermal vent by using an unmanned submersible "Dolphin 3K". The temperature of the hydrothermal fluid from the black smoker was $276^{\circ}C$. After isolation by repeated serial dilutions, An extremely thermophilic bacterial strain was selected. The strain designated as DT1331, was an anaerobic, non-motile, coccoid shaped bacterium with about 0.5 to $1.0\;\mu\textrm{m}$ in diameter. The strain DT1331 could grow up to $93^{\circ}C$, but the optimum temperature of this strain was $80^{\circ}C$. The growth occurred in the pH range of 4.5 to 8.5 and the optimum pH was 6.0. The strain DT1331 required 1% to 5% NaCl for growth and cell lysis was observed below 1% NaCl concentration. The bacterium could grow on polypeptides such as tryptone, peptone, soytone and on proteins such as casein or gelatin. However, no growth was observed on single amino acids, sugar and organic acids. Hydrogen gas was detected slightly during growth. This bacterium obligately required elemental sulfur and hydrogen sulfide gas was produced during growth.

  • PDF

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.

Rock-magnetic Properties of Chimneys from TA25 Seamount in the Tofua Arc, Southwest Pacific (통가 EEZ내 TA25 해저산에서 채취한 열수광체의 암석자기학적 특성 연구)

  • Kim, Wonnyon;Pak, Sang Joon;Lee, Kyeong Yong;Moon, Jai-Woon;Kim, Hyun Sub;Choi, Sun Ki
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.207-214
    • /
    • 2013
  • To identify rock-magnetic properties of volcanogenic hydrothermal sulfide deposits, chimneys were obtained from the Tofua Arc in Southwest Pacific, using a remotely operated vehicle (ROV) and Grab with AV cameras (GTVs). Three different types of chimneys used in this study are a high-temperature chimney with venting fluid-temperature of about $200^{\circ}C$ (ROV01), a low-temperature chimney of about $80^{\circ}C$ (GTV01), and an inactive chimney (ROV02). Magnetic properties of ROV01 are dominated by pyrrhotite, except for the outermost that experienced severe oxidation. Concentration and grain-size of ROV01 pyrrhotite are relatively low and fine. For GTV01, both magnetic concentration and grain-size increase from interior to margin. Pyrrhotite, dominant in the core, becomes mixed with hematite in the rim of the chimney due to secondary oxidation. High concentration and large grain-size of magnetic minerals characterize the ROV02. Dominant magnetic phases are pyrrhotite, hematite and goethite. In particular, the outermost rim shows a presence of magnetite produced by magnetotactic bacterial activity. Such distinctive contrast in magnetic concentration, grain-size and mineralogy among three different types of chimney enables the rock-magnetic study to characterize an evolution of hydrothermal deposits.

Mineralogical and Fluid Inclusion Study on Seafloor Hydrothermal Vents at TA25 Subsea Caldera in Tongan Waters (통가 TA25 해저산 칼데라 해저열수 분출구의 광석광물 산상 및 유체포유물 연구)

  • Choi, Sun Ki;Lee, Kyeong-Yong;Pak, Sang Joon;Choi, Sang-Hoon;Lee, In-Kyeong
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.273-285
    • /
    • 2015
  • The extensive hydrothermal deposits have been found, for the first time, on the western TA25 seamount caldera in the Tonga arc. The seafloor hydrothermal vents are active and immature, emitting the transparent fluids of which temperatures range from $150^{\circ}C$ to $242^{\circ}C$ (average=$203^{\circ}C$). The recovered hydrothermal sulfides are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. Predominant sphalerite categorize it into Zn-rich hydrothermal ore body. Zn-rich sulfide ores have minor enargite, indicating that mineralization occurred in high sulfidation environment. The proportion and FeS content of sphalerite increase from outside to inside of the hydrothermal ores, respectively. In particular, sphalerite has a great silver content (up to ~10 wt.%). Chalcopyrite is more frequently observed in mound than in the chimney, implying mineralization temperature in the mound is higher than in the chimney. Homogenization temperatures and salinities from fluid inclusions in barite at the mound range from $148^{\circ}C$ to $341^{\circ}C$ (average=$213^{\circ}C$) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. Homogenization temperatures suggest that sulfides in the mound mineralized at a higher temperature (${\geq}200^{\circ}C$) than in the chimney.

The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation (해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Kim, Chang-Hwan;Kim, Jong-Uk;Lee, Kyeong-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.