• Title/Summary/Keyword: hydrophobically modified

Search Result 22, Processing Time 0.023 seconds

Study on the hydrophobic modification of zirconia surface for organic-inorganic hybrid coatings (유-무기 하이브리드 코팅액 제조를 위한 지르코니아 표면의 소수화 개질 연구)

  • Lee, Soo;Moon, Sung Jin;Park, Jung Ju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.260-270
    • /
    • 2017
  • Zirconia has white color and physical, chemical stability, also using in high temperature materials and various industrial structural ceramics such as heat insulating materials and refractories due to their low thermal conductivity, excellent strength, toughness, and corrosion resistance. If hydrophobically modified zirconia is introduced into a hydrophobic acrylate coating solution, the hardness, chemical, electrical, and optical properties will be improved due to the better dispersibility of inorganic particle in organic coating media. Thus, we introduced $-CH_3$ group through silylation reaction using either trimethylchlorosilane(TMCS) or hexamethyldisilazane(HMDZ) on zirconia surface. The $Si-CH_3$ peaks derived from TMCS and HMDZ on hydrophobically modified zirconia surface was confirmed by FT-IR ATR spectroscopy, and introduction of silicon was confirmed by FE-SEM/EDS and ICP-AES. In addition, the sedimentation rate result in acrylate monomer of the modified zirconia showed the improved dispersibility. Comparison of the sizes of a pristine and the modified zirconia particles, which were clearly measured not by the normal microscope but by particle size analysis, provided a pulverizing was occurred by physical force during the silylation process. From the BET analysis data, the specific surface area of zirconia was approximately $18m^2/g$ and did not significantly change during modification process.

Structure Formation in Multilayered Films Prepared by the Layer-by-Layer Deposition using PAA and HM-PEO

  • Seo, Jin-Hwa;Lutkenhaus Jodie L..;Kim, Jun-Oh;Hammond Paula T.;Char Kook-Heon
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.295-295
    • /
    • 2006
  • In present study, poly(acrylic acid) (PAA) and hydrophobically modified poly(ethylene oxide) (HM-PEO) multilayers based on the hydrogen bonding between the component polymer pair have been prepared by the LbL deposition method. Dip assembled HM-PEO/PAA multilayers yield unique film morphologies in comparison with PEO/PAA multilayers due to the micellar formation of HM-PEO owing to the hydrophobic attraction between alkyl chains end-capped with the PEO chains. Individual HM-PEO micelles were connected through the bridging PEO chains to form temporary networks on multilayer surface and induced peculiar surface morphology on HM-PEO/PAA multilayers above the critical number of bilayers.

  • PDF

Preparation and Stability Measurement of Liposome-amino Acid Conjugates (리포솜-아미노산 결합체의 제조와 안정성 측정)

  • 문제영;이기영;김진철
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.96-99
    • /
    • 2000
  • Liposome-amino acid conjugates were prepared using phopholipid (dipalmitoylphosphatidylcholine (DPPC) or distearoylph-osphatidylcholine(DSPC)) and hydrophobically modified amino acids (glutamic acid(glu), glutamine(gln) or asparagine(asn)). The size of liposomes was about 100 nm. According to the glucose-induced turbidity changes, liposomes composed of DPPC and glutamic acid have higher glucose binding affinity than liposomes of DPPC-glutamine or DPPC-asparagine. Also, the liposomes were more stable in terms of aggregation or fusion than the others (DPPC-glutamine, DPPC-asparagine and DSPC-amino acids). As a rdsult, stable liposomes with an affinity for glucose could be prepared with DPPC and glutamic acid.

  • PDF

Characterization and Rheological Properties of Dilute-solutions of Three Different Families of Water-soluble Copolymers Prepared by Solution Polymerization

  • Jimenez-Regalaso, Enrique Javier;Cadenas-Pliego, Gregorio;Perez-Alvarez, Marissa;Hernandez-Valdez, Yessica
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.451-458
    • /
    • 2004
  • Water-soluble polyacrylamides hydrophobically modified with small amounts of N,N-dialkylacrylamides [N,N-dihexylacrylamide (DHAM) and N,N-dioctylacrylamide (DOAM)] have been prepared through free radical solution polymerizations using two hydrophobic initiators derived from 4,4' -azobis(4-cyanopentanoic acid) (ACVA) and long linear chains consisting of 12 and 16 carbon atoms (C12 and C16). This procedure resulted in polyacrylamides containing hydrophobic groups along the chain as well as at the chain ends. We compare the properties of this class of polymers, termed "combined associative polymers", with those of the multisticker (with hydrophobic groups along the polymer chain) and telechelic (with hydrophobic groups at the chain ends) associative polymers. These materials were prepared using DHAM or DOAM and a hydrophobic initiator (ACVA) modified with alkyl chains of two different lengths. Polymers having molecular weights (M$\_$w/) of ca. 175,000 and hydrophobic contents [H] of ca. 0.8 mol% were prepared using 0.07 mol% of initiator relative to the total monomer feed. We investigated the effects that the type, localization, and concentration of the hydrophobic groups have on the viscosities of the associative polymer solutions.

Analysis of cell survival genes in human gingival fibroblasts after sequential release of trichloroacetic acid and epidermal growth factor using the nano-controlled release system (나노방출제어시스템을 이용하여 trichloroacetic acid와 epidermal growth factor의 순차적 방출을 적용한 인간치은섬유아세포의 세포생존 관련 유전자 연구분석)

  • Cho, Joon Youn;Lee, Richard sungbok;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.145-157
    • /
    • 2020
  • Purpose: This study was to determine the possible effects of trichloroacetic acid (TCA) and epidermal growth factor (EGF) through cell survival genes of the PI3K-AKT signaling pathway when applying an hydrophobically modified glycol chitosan (HGC)-based nanocontrolled release system to human gingival fibroblasts in oral soft tissue regeneration. Materials and Methods: An HGC-based nano-controlled release system was produced, followed by the loading of TCA and EGF. The group was divided into control (CON), TCA-loaded nano-controlled release system (EXP1), and the TCA- and EGF- individually loaded nano-controlled release system (EXP2). A total for 29 genes related to the PI3K-AKT signaling pathway were analyzed after 48h of culture in human gingival fibroblasts. Real-time PCR, 1- way ANOVA and multiple regression analysis were performed. Results: Cell survival genes were significantly upregulated in EXP1 and EXP2. From multiple regression analysis, ITGB1 was determined to be the most influential factor for AKT1 expression. Conclusion: The application of TCA and EGF through the HGC-based nano-controlled release system can up-regulate the cell survival pathway.

Rheology of hydrophobic-alkali-soluble-emulsions (HASE) and the effects of surfactants

  • Lau, A.K.M.;Tiu, C.;Kealy, T.;Tam, K.C.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Steady and dynamic shear properties of two hydrophobically modified alkali soluble emulsions (HASE), NPJI and NPJ2, were experimentally investigated. At the same polymer concentration, NPJ1 is appreciably more viscous and elastic than NPJ2. The high hydrophobicity of NPJ1 allows hydrophobic associations and more junction sites to be created, leading to the formation of a network structure. Under shear deformation, NPJ1 exhibits shear-thinning behaviour as compared with Newtonian characteristics of NPJ2. NPJ1 and NPJ2 exhibit a very high and a low level of elasticity respectively over the frequency range tested. For NPJ1, a crossover frequency appears, which is shifted to lower frequencies and hence, longer relaxation times, as concentration increases. Three different surfactants anionic SDS, cationic CTAB, and non-ionic TX-100 were employed to examine the effects of surfactants on the rheology of HASE. Due to the different ionic behaviour of the surfactant, each type of surfactant imposed different electrostatic interactions on the two HASE polymers. In general, at low surfactant concentration, a gradual increase in viscosity is observed until a maximum is reached, beyond which a continuous reduction of viscosity ensues. Viscosity development is a combined result of HASE-surfactant interactions, accompanied by constant rearrangement of the hydrophobic associative junctions, and electrostatic interactions.

Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate (나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작)

  • Park, Yong Min;Seo, Sang Hyun;Seo, Young Ho;Kim, Byeong Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

Influence of the Surface Energetics on flotation Process - Importance of the Surface Energy and Polarity of Solid Particles in Flotation Efficiency - (부유부상 공정에 있어서 표면 에너지의 역할 - 부유부상 효율에 있어 고형 입자의 표면 에너지 및 극성성분의 중요성 -)

  • Lee, Hak-Rae;Park, Il;Lee, Yong-Min;Lee, Jin-Hee;Cho, Joong-Yeon;Han, Sin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • The object of this study was to determine the surface energy of hydrophobically modified micro-crystalline cellulose (MCC) with AKD and evaluate the effect of surface energy of the solid particles dispersed in aqueous medium on flotation efficiency. Especially to eliminate the complication derives from the diverse parameters of solid particles including particle size, type, etc. MCC's modified with AKD have been used. The surface energy Parameters were calculated from advancing contact angles of apolar and polar liquids on MCC pellets using the Lifshitz-van der Waals acid-base (LW:AB) approach. Total surface energy of hydrophobic MCC ranged from 46.19 mN/m to 48.60 mN/m. The contribution of the acid-base components to the total surface energy ranged form 13% to 17% for hydrophobic MCC's. The effect of surface characteristics on the flotation efficiency was evaluated. It was shown that there exist critical values of surface energies to increase flotation efficiency. Total surface energy and polar component of solid particles should be lower than 47 mN/m and 7 mN/m, respectively, for effective removal in the flotation process.

Improving Flow Property of AlSi10Mg Powder for Additive Manufacturing via Surface Treatment using Methyltrichlorosilane (Methyltrichlorosilane 표면 처리를 통한 적층 제조용 AlSi10Mg 분말의 유동 특성 향상 공정 연구)

  • Park, Sang Cheol;Kim, In Yeong;Kim, Young Il;Kim, Dae-Kyeom;Lee, Kee-Ahn;Oh, Soong Ju;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.363-369
    • /
    • 2022
  • AlSi10Mg alloys are being actively studied through additive manufacturing for application in the automobile and aerospace industries because of their excellent mechanical properties. To obtain a consistently high quality product through additive manufacturing, studying the flowability and spreadability of the metal powder is necessary. AlSi10Mg powder easily forms an oxide film on the powder surface and has hydrophilic properties, making it vulnerable to moisture. Therefore, in this study, AlSi10Mg powder was hydrophobically modified through silane surface treatment to improve the flowability and spreadability by reducing the effects of moisture. The improved flowability according to the number of silane surface treatments was confirmed using a Carney flowmeter. In addition, to confirm the effects of improved spreadability, the powder prior to surface treatment and that subjected to surface treatment four times were measured and compared using s self-designed recoating tester. The results of this study confirmed the improved flowability and spreadability based on the modified metal powder from hydrophilic to hydrophobic for obtaining a high-quality additive manufacturing product.

Development of Hydrophobically Modified Casein Derivative-Based Delivery System for Docosahexaenoic Acids by an Acid-Induced Gelation

  • Ho-Kyung Ha;Dan-Bi Woo;Mee-Ryung Lee;Won-Jae Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.2
    • /
    • pp.220-231
    • /
    • 2023
  • Although omega-3 fatty acids including docosahexaenoic acid (DHA) contain various health-promoting effects, their poor aqueous solubility and stability make them difficult to be induced in dairy foods. The aims of this research were to manufacture casein derivative-based delivery system using acid-induced gelation method with glucono-σ-lactone and to investigate the effects of production variables, such as pH and charged amount of linoleic acid, on the physicochemical properties of delivery systems and oxidative stability of DHA during storage in model milk. Covalent modification with linoleic acid resulted in the production of casein derivatives with varying degrees of modification. As pH was reduced from 5.0 to 4.8 and the charged amount of linoleic acid was increased from 0% to 30%, an increase in particle size of casein derivative-based delivery systems was observed. The encapsulation efficiency of DHA was increased with decreased pH and increased charged amount of linoleic acid. The use of delivery system for DHA resulted in a decrease in the development of primary and secondary oxidation products. An increase in the degree of modification of casein derivatives with linoleic acid resulted in a decrease in the formation of primary and secondary oxidation products than of free DHA indicating that delivery systems could enhance the oxidative stability of DHA during storage in model milk. In conclusions, casein derivatives can be an effective delivery system for DHA and charged amount of linoleic acid played a key role determining the physicochemical characteristics of delivery system and oxidative stability of DHA.